Solved

Two Linearly Independent Solutions of the Differential Equation y6y+25y=0y ^ { \prime \prime } - 6 y ^ { \prime } + 25 y = 0

Question 8

Multiple Choice

Two linearly independent solutions of the differential equation y6y+25y=0y ^ { \prime \prime } - 6 y ^ { \prime } + 25 y = 0 are


A) y1=e3x,y2=e4xy _ { 1 } = e ^ { 3 x } , y _ { 2 } = e ^ { 4 x }
B) y1=e3x,y2=e4xy _ { 1 } = e ^ { - 3 x } , y _ { 2 } = e ^ { - 4 x }
C) y1=e3xcos(4x) ,y2=e3xsin(4x) y _ { 1 } = e ^ { - 3 x } \cos ( 4 x ) , y _ { 2 } = e ^ { - 3 x } \sin ( 4 x )
D) y1=e3xcos(4x) ,y2=e3xsin(4x) y _ { 1 } = e ^ { 3 x } \cos ( 4 x ) , y _ { 2 } = e ^ { 3 x } \sin ( 4 x )
E) y1=e4xcos(3x) ,y2=e4xsin(3x) y _ { 1 } = e ^ { 4 x } \cos ( 3 x ) , y _ { 2 } = e ^ { 4 x } \sin ( 3 x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions