Solved

The Solution of the System of Differential Equations dxdt=6x+5ydydt=5x+4y\begin{array} { l } \frac { d x } { d t } = - 6 x + 5 y \\\frac { d y } { d t } = - 5 x + 4 y\end{array}

Question 10

Multiple Choice

The solution of the system of differential equations dxdt=6x+5ydydt=5x+4y\begin{array} { l } \frac { d x } { d t } = - 6 x + 5 y \\\frac { d y } { d t } = - 5 x + 4 y\end{array} is


A) x=(c1c2/5) et+c2tet,y=c1et+c2tetx = \left( c _ { 1 } - c _ { 2 } / 5 \right) e ^ { t } + c _ { 2 } t e ^ { t } , y = c _ { 1 } e ^ { t } + c _ { 2 } t e ^ { t }
B) x=(c1c2) et+c2tet,y=c1et+c2tetx = \left( c _ { 1 } - c _ { 2 } \right) e ^ { - t } + c _ { 2 } t e ^ { - t } , y = c _ { 1 } e ^ { - t } + c _ { 2 } t e ^ { - t }
C) x=(c1+c2) et+c2tet,y=c1et+c2tetx = \left( c _ { 1 } + c _ { 2 } \right) e ^ { - t } + c _ { 2 } t e ^ { - t } , y = c _ { 1 } e ^ { - t } + c _ { 2 } t e ^ { - t }
D) x=(c1+c2/5) et+c2tet,y=c1et+c2tetx = \left( c _ { 1 } + c _ { 2 } / 5 \right) e ^ { - t } + c _ { 2 } t e ^ { - t } , y = c _ { 1 } e ^ { - t } + c _ { 2 } t e ^ { - t }
E) x=(c1c2/5) et+c2tet,y=c1et+c2tetx = \left( c _ { 1 } - c _ { 2 } / 5 \right) e ^ { - t } + c _ { 2 } t e ^ { - t } , y = c _ { 1 } e ^ { - t } + c _ { 2 } t e ^ { - t }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions