Solved

The Solution of the Initial Value Problem dxdt=10x5ydydt=8x12yx(0)=2,y(0)=1\begin{array} { l } \frac { d x } { d t } = 10 x - 5 y \\\frac { d y } { d t } = 8 x - 12 y \\x ( 0 ) = 2 , y ( 0 ) = 1\end{array}

Question 12

Multiple Choice

The solution of the initial value problem dxdt=10x5ydydt=8x12yx(0) =2,y(0) =1\begin{array} { l } \frac { d x } { d t } = 10 x - 5 y \\\frac { d y } { d t } = 8 x - 12 y \\x ( 0 ) = 2 , y ( 0 ) = 1\end{array} is


A) x=(35e8te10t) /18,y=(7e8t+2e10t) /9x = \left( 35 e ^ { 8 t } - e ^ { - 10 t } \right) / 18 , y = \left( 7 e ^ { 8 t } + 2 e ^ { - 10 t } \right) / 9
B) x=(35e8t+e10t) /18,y=(7e8t+2e10t) /9x = \left( 35 e ^ { 8 t } + e ^ { - 10 t } \right) / 18 , y = \left( 7 e ^ { 8 t } + 2 e ^ { - 10 t } \right) / 9
C) x=(35e8t+e10t) /9,y=(7e8t+2e10t) /9x = \left( 35 e ^ { 8 t } + e ^ { - 10 t } \right) / 9 , y = \left( 7 e ^ { 8 t } + 2 e ^ { - 10 t } \right) / 9
D) x=(35e8te10t) /9,y=(7e8t2e10t) /9x = \left( 35 e ^ { 8 t } - e ^ { - 10 t } \right) / 9 , y = \left( 7 e ^ { 8 t } - 2 e ^ { - 10 t } \right) / 9
E) x=(35e8t+e10t) /18,y=(7e8t2e10t) /9x = \left( 35 e ^ { 8 t } + e ^ { - 10 t } \right) / 18 , y = \left( 7 e ^ { 8 t } - 2 e ^ { - 10 t } \right) / 9

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions