Solved

Without Solving for the Undetermined Coefficients, the Correct Form of a Particular

Question 31

Multiple Choice

Without solving for the undetermined coefficients, the correct form of a particular solution of the differential equation y+4y+5y=e2xcosxy ^ { \prime \prime } + 4 y ^ { \prime } + 5 y = e ^ { - 2 x } \cos x is


A) yp=Ae2xcosxy _ { p } = A e ^ { - 2 x } \cos x
B) yp=Ae2xcosx+Be2xsinxy _ { p } = A e ^ { - 2 x } \cos x + B e ^ { - 2 x } \sin x
C) yp=Ae2xsinxy _ { p } = A e ^ { - 2 x } \sin x
D) yp=Axe2xcosx+Bxe2xsinxy _ { p } = A x e ^ { - 2 x } \cos x + B x e ^ { - 2 x } \sin x
E) yp=Axe2xcosx+Be2xsinxy _ { p } = A x e ^ { - 2 x } \cos x + B e ^ { - 2 x } \sin x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions