Solved

Two Linearly Independent Solutions of the Differential Equation y4y+5y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 5 y = 0

Question 35

Multiple Choice

Two linearly independent solutions of the differential equation y4y+5y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 5 y = 0 are


A) y1=ex,y2=e5xy _ { 1 } = e ^ { x } , y _ { 2 } = e ^ { 5 x }
B) y1=ex,y2=e5xy _ { 1 } = e ^ { - x } , y _ { 2 } = e ^ { - 5 x }
C) y1=e2xcosx,y2=e2xsinxy _ { 1 } = e ^ { 2 x } \cos x , y _ { 2 } = e ^ { 2 x } \sin x
D) y1=excos(2x) ,y2=exsin(2x) y _ { 1 } = e ^ { x } \cos ( 2 x ) , y _ { 2 } = e ^ { x } \sin ( 2 x )
E) y1=excos(2x) ,y2=e2xsin(2x) y _ { 1 } = e ^ { - x } \cos ( 2 x ) , y _ { 2 } = e ^ { - 2 x } \sin ( 2 x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions