Solved

Without Solving for the Undetermined Coefficients, the Correct Form of a Particular

Question 30

Multiple Choice

Without solving for the undetermined coefficients, the correct form of a particular solution of the differential equation y+6y+13y=e3xcos(2x) y ^ { \prime \prime } + 6 y ^ { \prime } + 13 y = e ^ { - 3 x } \cos ( 2 x ) is


A) yp=Ae3xcos(2x) y _ { p } = A e ^ { - 3 x } \cos ( 2 x )
B) yp=Ae3xcos(2x) +Be3xsin(2x) y _ { p } = A e ^ { - 3 x } \cos ( 2 x ) + B e ^ { - 3 x } \sin ( 2 x )
C) yp=Ae3xcos(2x) y _ { p } = A e ^ { 3 x } \cos ( 2 x )
D) yp=Axe3xcos(2x) +Bxe3xsin(2x) y _ {p } = A x e ^ { - 3 x } \cos ( 2 x ) + B x e ^ { - 3 x } \sin ( 2 x )
E) yp=Axe3xcos(2x) +Be3xsin(2x) y _ { p } = A x e ^ { - 3 x } \cos ( 2 x ) + B e ^ { - 3 x } \sin ( 2 x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions