Solved

The Solution of the Logistic Equation dPdt=P(82P)\frac { d P } { d t } = P ( 8 - 2 P )

Question 1

Multiple Choice

The solution of the logistic equation dPdt=P(82P) \frac { d P } { d t } = P ( 8 - 2 P ) with initial condition P(0) =2P ( 0 ) = 2 is


A) P=4/(2e8t) P = 4 / \left( 2 - e ^ { - 8 t } \right)
B) P=2/(8+e8t) P = 2 / \left( 8 + e ^ { - 8 t } \right)
C) P=8/(2+e8t) P = 8 / \left( 2 + e ^ { - 8 t } \right)
D) P=8/(2e8t) P = 8 / \left( 2 - e ^ { - 8 t } \right)
E) P=4/(1+e8t) P = 4 / \left( 1 + e ^ { - 8 t } \right)

Correct Answer:

verifed

Verified

Related Questions