Solved

Use Power Series to Solve the Differential Equation (x10)y+2y=0( x - 10 ) y ^ { \prime } + 2 y = 0

Question 25

Multiple Choice

Use power series to solve the differential equation. (x10) y+2y=0( x - 10 ) y ^ { \prime } + 2 y = 0


A) y(x) =c0n=0xn10ny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { 10 ^ { n } }
B) y(x) =c0n=0n+110nxny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { n + 1 } { 10 ^ { n } } x ^ { n }
C) y(x) =c0n=0(n+1) xny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { ( n + 1 ) } { x ^ { n } }
D) y(x) =c0n=0(n+1) xny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } ( n + 1 ) x ^ { n }
E) y(x) =c0n=0nxn10ny ( x ) = c _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { n x ^ { n } } { 10 ^ { n } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions