Solved

If We Add the First 100 Terms of the Alternating 112+1314+151 - \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } + \frac { 1 } { 5 } - \cdots

Question 95

Multiple Choice

If we add the first 100 terms of the alternating series 112+1314+151 - \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } + \frac { 1 } { 5 } - \cdots , how close can we determine the partial sum S100S _ { 100 } to be to the sum SS of the series?


A) s100>s, with s100s<1101s _ { 100 } > s \text {, with } s _ { 100 } - s < \frac { 1 } { 101 }
B) s100>s, with s100s<1e100s _ { 100 } > s , \text { with } s _ { 100 } - s < \frac { 1 } { e ^ { 100 } }
C) s100>s, with s100s<1100s _ { 100 } > s \text {, with } s _ { 100 } - s < \frac { 1 } { 100 }
D) s100<s, with ss100<1e101s _ { 100 } < s , \text { with } s - s _ { 100 } < \frac { 1 } { e ^ { 101 } }
E) s100>s, with s100s<1e101s _ { 100 } > s , \text { with } s _ { 100 } - s < \frac { 1 } { e ^ { 101 } }
F) s100<s, with ss100<1101s _ { 100 } < s \text {, with } s - s _ { 100 } < \frac { 1 } { 101 }
G) s100<s, with ss100<1100s _ { 100 } < s \text {, with } s - s _ { 100 } < \frac { 1 } { 100 }
H) s100<s, with ss100<1e100s _ { 100 } < s , \text { with } s - s _ { 100 } < \frac { 1 } { e ^ { 100 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions