Solved

Which One of the Following Series Diverge?
A) n=11n(2n+1)\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ( 2 n + 1 ) }

Question 286

Multiple Choice

Which one of the following series diverge?


A) n=11n(2n+1) \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ( 2 n + 1 ) }
B) n=12nn+1\sum _ { n = 1 } ^ { \infty } \frac { 2 n } { n + 1 }
C) n=11(n+1) (n+3) \sum _ { n = 1 } ^ { \infty } \frac { 1 } { ( n + 1 ) ( n + 3 ) }
D) n=113n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 3 ^ { n } }
E) n=1n2n2n\sum _ { n = 1 } ^ { \infty } \frac { n - 2 } { n 2 ^ { n } }
F) n=12nn!\sum _ { n = 1 } ^ { \infty } \frac { 2 n } { n ! }
G) n=1n100n!\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 100 } } { n ! }
H) n=1n1002n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 100 } } { 2 ^ { n } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions