Solved

Find the Values of X for Which the Series n=1(1x2+2)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { x ^ { 2 } + 2 } \right) ^ { n }

Question 285

Multiple Choice

Find the values of x for which the series n=1(1x2+2) n\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { x ^ { 2 } + 2 } \right) ^ { n } converges.


A) (15,15) \left( - \frac { 1 } { 5 } , \frac { 1 } { 5 } \right)
B) (16,16) \left( - \frac { 1 } { 6 } , \frac { 1 } { 6 } \right)
C) (12,12) \left( - \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
D) 0
E) (-1, 1)
F) (34,34) \left( - \frac { 3 } { 4 } , \frac { 3 } { 4 } \right)
G) (32,32) \left( - \frac { 3 } { 2 } , \frac { 3 } { 2 } \right)
H) (,) ( - \infty , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions