Solved

Which of the Following Series Can Be Shown to Be n=11n2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } }

Question 112

Multiple Choice

Which of the following series can be shown to be convergent using the Ratio Test?
1) n=11n2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } }
2) n=1n3n\sum _ { n = 1 } ^ { \infty } \frac { n } { 3 ^ { n } }
3) n=12nn!\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } } { n ! }


A) None
B) 1
C) 2
D) 3
E) 1, 2
F) 1, 3
G) 2, 3
H) 1, 2, 3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions