Solved

Determine Whether Each of the Following Series Converges n=12+(1)n2n\sum _ { n = 1 } ^ { \infty } \frac { 2 + ( - 1 ) ^ { n } } { 2 ^ { n } }

Question 229

Short Answer

Determine whether each of the following series converges. Justify your answer by specifying which test you are using and showing any necessary computation.
(a) n=12+(1)n2n\sum _ { n = 1 } ^ { \infty } \frac { 2 + ( - 1 ) ^ { n } } { 2 ^ { n } }
(b) n=1n2+13n3n+2\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 2 } + 1 } { 3 n ^ { 3 } - n + 2 }
(c) n=1(1+sinnn)2\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 + \sin n } { n } \right) ^ { 2 }
(d) n=1n!135(2n1)\sum _ { n = 1 } ^ { \infty } \frac { n ! } { 1 \cdot 3 \cdot 5 \cdots \cdots ( 2 n - 1 ) }
(e) n=1n!nn\sum _ { n = 1 } ^ { \infty } \frac { n ! } { n ^ { n } }
(f) n=1(lnnn)n\sum _ { n = 1 } ^ { \infty } \left( \frac { \ln n } { n } \right) ^ { n }
(g) n=11n1+lnn\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n \sqrt { 1 + \ln n } }
(h) n=1lnn(n+1)3\sum _ { n = 1 } ^ { \infty } \frac { \ln n } { ( n + 1 ) ^ { 3 } }
(i) n=13nsin(π4n)\sum _ { n = 1 } ^ { \infty } 3 ^ { n } \sin \left( \frac { \pi } { 4 ^ { n } } \right)
(j) n=1tan1n\sum _ { n = 1 } ^ { \infty } \tan ^ { - 1 } n
(k) n=1(1)nlnnn\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { \ln n } { n }
(l) n=1ln(1+1n)\sum _ { n = 1 } ^ { \infty } \ln \left( 1 + \frac { 1 } { n } \right)
(m) n=12nn!258(3n1)\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } n ! } { 2 \cdot 5 \cdot 8 \cdot \ldots ( 3 n - 1 ) }
(n) n=1n+1nn\sum _ { n = 1 } ^ { \infty } \frac { \sqrt { n + 1 } - \sqrt { n } } { n }

Correct Answer:

verifed

Verified

(a) Converges
(b) Diverges
(c)...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions