Solved

Let an\sum a _ { n } And bn\sum b _ { n }

Question 227

Essay

Let an\sum a _ { n } and bn\sum b _ { n } be two series. Determine whether each of the following statements is true or false. Justify your answer.
(a) If an\sum a _ { n } converges, then an0a _ { n } \rightarrow 0 .
(b) If an0a _ { n } \rightarrow 0 , then an\sum a _ { n } converges.
(c) If an\sum a _ { n } converges, and bn\sum b _ { n } diverges, then (an+bn)\sum \left( a _ { n } + b _ { n } \right) diverges.
(d) If an\sum a _ { n } diverges, and bn\sum b _ { n } diverges, then (an+bn)\sum \left( a _ { n } + b _ { n } \right) diverges.
(e) If an\sum a _ { n } converges, and limnbn=0\lim _ { n \rightarrow \infty } b _ { n } = 0 then (an+bn)\sum \left( a _ { n } + b _ { n } \right) converges.

Correct Answer:

verifed

Verified

(a) True
(b) False. For example, blured image , but ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions