Solved

Use the Graphs of F and G Below to Evaluate limx2[f(x)+g(x)]\lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ]

Question 46

Essay

Use the graphs of f and g below to evaluate each limit, if it exists. If it does not exist, explain why.  Use the graphs of f and g below to evaluate each limit, if it exists. If it does not exist, explain why.     (a)  \lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ]  (b)  \lim _ { x \rightarrow 2 } \left[ \frac { g ( x ) } { f ( x ) } \right]  (c)  \lim _ { x \rightarrow 1 } [ f ( x ) \cdot g ( x ) ]  (d)  \lim _ { x \rightarrow 0 } \left[ ( x - 3 ) ^ { 2 } \cdot g ( x ) \right]  Use the graphs of f and g below to evaluate each limit, if it exists. If it does not exist, explain why.     (a)  \lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ]  (b)  \lim _ { x \rightarrow 2 } \left[ \frac { g ( x ) } { f ( x ) } \right]  (c)  \lim _ { x \rightarrow 1 } [ f ( x ) \cdot g ( x ) ]  (d)  \lim _ { x \rightarrow 0 } \left[ ( x - 3 ) ^ { 2 } \cdot g ( x ) \right] (a) limx2[f(x)+g(x)]\lim _ { x \rightarrow - 2 } [ f ( x ) + g ( x ) ] (b) limx2[g(x)f(x)]\lim _ { x \rightarrow 2 } \left[ \frac { g ( x ) } { f ( x ) } \right] (c) limx1[f(x)g(x)]\lim _ { x \rightarrow 1 } [ f ( x ) \cdot g ( x ) ] (d) limx0[(x3)2g(x)]\lim _ { x \rightarrow 0 } \left[ ( x - 3 ) ^ { 2 } \cdot g ( x ) \right]

Correct Answer:

verifed

Verified

(a) blured image (b) blured image ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions