Solved

Let E Be the Solid That Lies Below the Sphere x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 }

Question 95

Multiple Choice

Let E be the solid that lies below the sphere x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 } and above the cone ϕ=β\phi = \beta , where 0<β<π20 < \beta < \frac { \pi } { 2 } . Find the value of the triple integral EzdV\iiint _ { E } z d V .


A) πa2sinβ\pi a ^ { 2 } \sin \beta

B) . 12πa2sinβ\frac { 1 } { 2 } \pi a ^ { 2 } \sin \beta
C) πa2sin2β\pi a ^ { 2 } \sin ^ { 2 } \beta
D) 12πa2sin2β\frac { 1 } { 2 } \pi a ^ { 2 } \sin ^ { 2 } \beta
E) 14πa2sin2β\frac { 1 } { 4 } \pi a ^ { 2 } \sin ^ { 2 } \beta
F) 12πα4sin2β\frac { 1 } { 2 } \pi \alpha ^ { 4 } \sin ^ { 2 } \beta


G) 14πa4sin2β\frac { 1 } { 4 } \pi a ^ { 4 } \sin ^ { 2 } \beta

H) πa4sinβ\pi a ^ { 4 } \sin \beta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions