Exam 7: Natural Deduction in Propositional Logic
Exam 1: Basic Concepts421 Questions
Exam 2: Language: Meaning and Definition360 Questions
Exam 3: Informal Fallacies360 Questions
Exam 4: Categorical Propositions450 Questions
Exam 5: Categorical Syllogisms357 Questions
Exam 6: Propositional Logic354 Questions
Exam 7: Natural Deduction in Propositional Logic76 Questions
Exam 8: Predicate Logic60 Questions
Exam 9: Analogy and Legal and Moral Reasoning36 Questions
Exam 10: Causality and Mills Methods45 Questions
Exam 11: Probability45 Questions
Exam 12: Statistical Reasoning45 Questions
Exam 13: Hypotheticalscientific Reasoning45 Questions
Exam 14: Science and Superstition45 Questions
Select questions type
Given the following premises:
1)∼(Q • ∼S)
2)∼F ⊃ (Q • ∼S)
3)H ∨ (Q • ∼S)
(Multiple Choice)
4.9/5
(30)
Given the following premises:
1)(E ⊃ K) ∨ W
2)∼W
3)W ∨ ∼(Q ⊃ E)
(Multiple Choice)
4.8/5
(37)
Given the following premises:
1)A
2)(A ⊃ ∼T) ⊃ ∼G
3)Q ⊃ (A ⊃ ∼T)
(Multiple Choice)
4.8/5
(32)
Given the following premises:
1)(C • ∼F) ⊃ E
2)G ∨ (C • ∼F)
3)∼(C • ∼F)
(Multiple Choice)
4.8/5
(39)
Use an ordinary proof (not conditional or indirect proof):
1.K ∨ (S • N)
2.∼(K • ∼Q)
3.∼(N • ∼Q)
/ Q
(Short Answer)
4.8/5
(37)
Given the following premises:
1)∼N • ∼F
2)K ⊃ (N • F)
3)U ∨ (K • ∼N)
(Multiple Choice)
4.8/5
(45)
Use an ordinary proof (not conditional or indirect proof):
1.S ⊃ (K • F)
2.F ⊃ (G • H)
/ S ⊃ H
(Short Answer)
4.7/5
(38)
Given the following premises:
1)∼P
2)L ⊃ (P ∨ M)
3)(P • M) ⊃ (∼R ∨ ∼R)
(Multiple Choice)
4.9/5
(37)
Given the following premises:
1)∼N ∨ H
2)Q ⊃ ∼(∼N ∨ H)
3)(∼N ⊃ Q) • (H ⊃ Q)
(Multiple Choice)
4.9/5
(35)
Given the following premises:
1)∼R ≡ ˜R
2)N • ˜T
3)R ⊃ ˜(N • ˜T)
(Multiple Choice)
4.7/5
(35)
Given the following premises:
1)Q ⊃ (H • L)
2)H ⊃ ∼Q
3)L ⊃ ∼Q
(Multiple Choice)
4.9/5
(35)
Use an ordinary proof (not conditional or indirect proof):
1.K ⊃ L
2.∼K ∨ F
3.(L • F) ⊃ A
4.∼A
/ ∼K
(Short Answer)
4.9/5
(35)
Given the following premises:
1)G • ˜A
2)K ⊃ (G • ˜A)
3)G ⊃ M
(Multiple Choice)
4.7/5
(44)
Use an ordinary proof (not conditional or indirect proof):
1.E ⊃ (S ⊃ T)
2.(∼L • M) ⊃ (S • E)
3. ∼(T ∨ L)
/ ∼M
(Short Answer)
4.8/5
(37)
Given the following premises:
1)(S • ∼J) ∨ (∼S • ∼∼J)
2)S ∨ ∼S
3)∼J ⊃ P
(Multiple Choice)
4.8/5
(32)
Given the following premises:
1)(S ⊃ R) ⊃ (J ⊃ T)
2)(P ⊃ R) ⊃ (S ⊃ R)
3)R ⊃ J
(Multiple Choice)
4.9/5
(44)
Showing 21 - 40 of 76
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)