Exam 7: Natural Deduction in Propositional Logic

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given the following premises: 1)∼(G • F) 2)∼F ⊃ H 3)(G ⊃ ∼F) • (∼F ⊃ G)

(Multiple Choice)
5.0/5
(41)

Use conditional proof: 1.S ⊃ (B ⊃ T) 2.N ⊃ (T ⊃ ∼B) / (S • N) ⊃ ∼B

(Short Answer)
4.9/5
(45)

Given the following premises: 1)(J • ∼N) ∨ T 2)∼(J • ∼N) 3)∼T

(Multiple Choice)
4.7/5
(31)

Given the following premises: 1)N ⊃ ∼(S ∨ K) 2)S ∨ K 3)S ⊃ (R • Q)

(Multiple Choice)
4.9/5
(38)

Given the following premises: 1)H ∨ M 2)E ⊃ ∼(H ∨ M) 3)(H ⊃ D) • (M ⊃ O)

(Multiple Choice)
4.9/5
(36)

Given the following premises: 1)D ⊃ (∼A ∨ ∼A) 2)∼A ⊃ (R • M) 3)∼R • ∼M

(Multiple Choice)
4.9/5
(35)

Given the following premises: 1)F ⊃ J 2)A ⊃ (F • J) 3)A • (Q ∨ N)

(Multiple Choice)
4.8/5
(40)

Given the following premises: 1)B 2)∼R ⊃ K 3)B ⊃ (K ⊃ E)

(Multiple Choice)
4.9/5
(44)

Given the following premises: 1)T ∨ S 2)A ⊃ T 3)A • (∼T • S)

(Multiple Choice)
5.0/5
(32)

Use an ordinary proof (not conditional or indirect proof): 1.∼N ⊃ (∼R ⊃ C) 2.R ⊃ N 3.∼C / N

(Short Answer)
4.8/5
(30)

Given the following premises: 1)(L ⊃ M) • (F ⊃ J) 2)M ⊃ ∼(F ∨ L) 3)F ∨ L

(Multiple Choice)
4.9/5
(36)

Given the following premises: 1)∼∼N 2)K ⊃ ∼N 3)∼N ∨ (K • S)

(Multiple Choice)
4.9/5
(31)

Use an ordinary proof (not conditional or indirect proof): 1.F ⊃ (J ∨ ∼F) 2.J ⊃ (L ∨ ∼J) / F ⊃ L

(Short Answer)
4.8/5
(36)

Use an ordinary proof (not conditional or indirect proof): 1.M ⊃ (R • E) 2.(E ∨ H) ⊃ G / M ⊃ G

(Short Answer)
4.7/5
(33)

Given the following premises: 1)∼E ⊃ P 2)∼P 3)∼(P ∨ ∼H)

(Multiple Choice)
4.8/5
(40)

Use natural deduction to prove the following logical truth: [(P ∨ Q) ⊃ (R • T)] ⊃ (P ⊃ R)

(Short Answer)
4.8/5
(21)

Given the following premises: 1)N ∨ C 2)(N ∨ C) ⊃ (F ⊃ C) 3)∼C

(Multiple Choice)
4.9/5
(30)

Given the following premises: 1)(K • ∼T) ∨ (K • ∼H) 2)∼M ⊃ (K • ∼H) 3)∼(K • ∼H)

(Multiple Choice)
4.8/5
(33)

Given the following premises: 1)F ∨ S 2)∼S 3)(S ⊃ W) • (F ⊃ N)

(Multiple Choice)
4.8/5
(32)

Given the following premises: 1)∼(∼H • J) 2)K ∨ (∼H • J) 3)(M ∨ M) ⊃ (∼H • J)

(Multiple Choice)
4.8/5
(37)
Showing 41 - 60 of 76
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)