Exam 7: Natural Deduction in Propositional Logic

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given the following premises: 1)∼R ∨ ∼R 2)R ∨ (∼J • ∼H) 3)∼R ⊃ (H • B)

(Multiple Choice)
4.9/5
(23)

Given the following premises: 1)Q ⊃ (∼N ∨ ∼N) 2)∼N ⊃ ∼∼P 3)P ⊃ ∼G

(Multiple Choice)
4.8/5
(39)

Given the following premises: 1)R • ∼S 2)R ⊃ ∼(S • ∼F) 3)∼S ⊃ (F • N)

(Multiple Choice)
5.0/5
(34)

Use an ordinary proof (not conditional or indirect proof): 1.A ⊃ (Q ∨ R) 2.(R • Q) ⊃ B 3.A • ∼B / R ≡ ∼Q

(Short Answer)
4.7/5
(35)

Given the following premises: 1)S ⊃ (∼∼T • ∼∼C) 2)(S • Q) ∨ C 3)∼C

(Multiple Choice)
4.8/5
(45)

Given the following premises: 1)E ⊃ (B • J) 2)(J • B) ⊃ ∼L 3)L

(Multiple Choice)
4.8/5
(33)

Given the following premises: 1)Q ⊃ (H • ∼F) 2)∼(Q • ∼M) 3)∼G ⊃ (Q • ∼M)

(Multiple Choice)
4.8/5
(48)

Given the following premises: 1)R ⊃ (∼B ⊃ F) 2)∼U ⊃ B 3)∼B

(Multiple Choice)
4.9/5
(25)

Given the following premises: 1)R ⊃ (E • D) 2)R • ∼G 3)∼E ⊃ G

(Multiple Choice)
4.8/5
(26)

Use indirect proof: 1.(P ∨ F) ⊃ (A ∨ D) 2.A ⊃ (M • ∼P) 3.D ⊃ (C • ∼P) / ∼P

(Short Answer)
4.9/5
(38)

Given the following premises: 1)N ≡ R 2)(N • ∼R) ⊃ C 3)N

(Multiple Choice)
4.7/5
(33)

Given the following premises: 1)T ⊃ (G ∨ G) 2)∼P ⊃ T 3)F ⊃ (B ⊃ ∼P)

(Multiple Choice)
4.8/5
(37)

Given the following premises: 1)(∼H • ∼J) ⊃ K 2)∼(∼H • ∼J) 3)(∼H • N) ∨ (∼H • ∼J)

(Multiple Choice)
4.9/5
(33)

Given the following premises: 1)S ∨ (∼Q ∨ ∼C) 2)(∼Q ∨ ∼C) ⊃ M 3)T ⊃ (Q • C)

(Multiple Choice)
4.9/5
(32)

Use indirect proof: 1.S ⊃ (R • ∼T) 2.(S • R) ⊃ (T ∨ E) 3.(Q ∨ ∼T) ⊃ ∼E / ∼S

(Short Answer)
4.8/5
(27)

Given the following premises: 1)E 2)R ⊃ ∼E 3)N ⊃ (∼C ⊃ R)

(Multiple Choice)
4.9/5
(31)
Showing 61 - 76 of 76
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)