Exam 11: Predicate Logic

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Symbolize the following statement. At least one U.S.president was a Quaker.

(Multiple Choice)
4.9/5
(30)

The following inference is an application of which rule? (y)Gy.Therefore, Gb.

(Multiple Choice)
4.8/5
(39)

The following inference is an application of which rule? ~( \exists y)~(My • Na).Therefore, (y)(My • Na).

(Multiple Choice)
4.7/5
(33)

The following inference is an application of which rule? (z)(Az \supset Bd).Therefore, Ad \supset Bd.

(Multiple Choice)
4.7/5
(35)

In the following proof, which justification is correct for line 7? \begin{array}{llcc} \text {(1) (x)\{[\mathrm{C} x \cdot(\mathrm{D} x \vee \mathrm{E} x)] \supset \mathrm{F} x\} } & & \text { Premise} \\ \text { (2) \( (\exists y)(E y * \sim \mathrm{Fy}) \) } & \text {\(/(\exists x) \sim C x\) }& \text { Premise/Conclusion }\\ \text {(3) \( \mathrm{Ea} * \sim \mathrm{Fa} \) } && \text { 2 EI }\\ \text { (4) \( [\mathrm{Ca} \cdot(\mathrm{Da} \cup \mathrm{Ea})] D \mathrm{Fa} \)} && \text {\( 1 \mathrm{UI} \) }\\ \text {(5) \( -\mathrm{Fa} \) } && \text {\( 3 \mathrm{Simp} \) }\\ \text { (6) \( \sim[\mathrm{Ca} \cdot(\mathrm{Da} \vee \mathrm{Ea})] \) } && \text { \( 4,5 \mathrm{MT} \) }\\ \text { (7) \( \sim \mathrm{Ca} v \sim(\mathrm{Da} v \mathrm{Ea})] \) } &\\\end{array}

(Multiple Choice)
4.8/5
(26)

Symbolize the following statement. Only skydivers with much experience perform in thrill shows.

(Multiple Choice)
4.7/5
(35)

Identify the quantity and quality of the following statement form. Everyone likes to discuss the weather.

(Multiple Choice)
4.7/5
(36)

Which of the following is the existential instantiation rule?

(Multiple Choice)
4.8/5
(32)

Translate the following symbolized categorical statement into English using the provided key. Cx=x\mathrm { C } x = x is a crocodile \quad \quad \quad \quad Mx=x\mathrm { M } x = x makes a good pet \quad \quad \quad \quad \quad \quad (x)(CxMx)( \exists x ) ( \mathrm { C } x \cdot \sim \mathrm { M } x )

(Multiple Choice)
4.9/5
(43)

Symbolize the following statement. All green or yellow vegetables are nutritious.

(Multiple Choice)
4.9/5
(29)

In the following proof, which justification is correct for line 7? \begin{array}{llcc} \text {(1) (x)(\sim \mathrm{N} x \supset \mathrm{B} x) } && \text {Premise } \\ \text { (2) \( (\exists y) \sim \mathrm{By} \) } & \text { \(I(\exists z)(\mathrm{N} z \quad \vee \sim \mathrm{C} z)\)} & \text { Premise/Conclusion } \\ \text { (3) \( \sim \mathrm{Ba} \)} &&2 \mathrm{EI} \\ \text {(4) \( \sim \mathrm{Na} \supset \mathrm{Ba} \) } && 1 \mathrm{UI} \\ \text {(5) \( -\mathrm{Na} 3 \), } &&4 \mathrm{MI} \\ \text {(6) \( \mathrm{Na} \) } &&5 \mathrm{DN} \\\text { (7) \( \mathrm{Na} v \sim \mathrm{Cba} \) } &\\\end{array}

(Multiple Choice)
4.9/5
(42)

In the following proof, which justification is correct for line 5? \begin{array}{llcc} \text {(1) (y)(\mathrm{G} y \supset \mathrm{Hy}) } &&\text { Premise } \\ \text { (2) \( \sim[(\exists z) \mathrm{Hz} \vee(\exists z) \mathrm{I}] \) } &\text {\(/ \sim(\exists x) \mathrm{G} x\) } &\text {Premise/Conclusion } \\ \text { (3) \( (\exists x) \mathrm{G} x \) } &&\text {Assumption } \\ \text { (4) \( \mathrm{Ga} \) } &&\text { \( 3 \mathrm{EI} \) } \\ \text { (5) \( \mathrm{Ga} \supset \mathrm{Ha} \)} &\\\end{array}

(Multiple Choice)
4.8/5
(34)

Symbolize the following statement. The painting is beautiful, but something in the foreground is disturbing.

(Multiple Choice)
4.9/5
(30)

Identify the quantity and quality of the following statement. ( \exists x)(Sx • ~Px)

(Multiple Choice)
4.7/5
(39)

Identify the quantity and quality of the following statement form. There is an S that is a P.

(Multiple Choice)
4.9/5
(33)

Symbolize the following statement. Some rules of logic are hard to remember.

(Multiple Choice)
4.9/5
(34)

Pa is called a(n) _____ sentence and the constant "a" is said to be _____.

(Multiple Choice)
4.9/5
(39)

In the following proof, which justification is correct for line 5? \begin{array}{llcc} \text { (1) (x)[\operatorname{Ix}\supset(\mathrm{T} x x \supset H x)] } & & \text { Premise } \\ \text {(2) \( (x)(\mathrm{H} x \supset \mathrm{D} x) \cdot(y) \sim \mathrm{D} y \) } && \text { Premise/Conclusion } \\& \text { \(/(x)(\exists y) \sim(\mathrm{I} y \cdot \mathrm{Tyx})\) } &\\ \text { (3) \( (x)(\mathrm{H} x \supset \mathrm{D} x) \) } && \text { \( 2 \operatorname{Simp} \) } \\ \text { (4) \( (y) \sim D y \) } && \text { \( 2 \operatorname{Simp} \)} \\ \text { (5) \( \mathrm{Ia} \supset(\mathrm{Taa} \supset \mathrm{Ha}) \) } &\\\end{array}

(Multiple Choice)
4.8/5
(33)

Which of the following is the universal generalization rule?

(Multiple Choice)
4.8/5
(36)

Symbolize the following statement. No triangles have four angles.

(Multiple Choice)
4.8/5
(42)
Showing 81 - 100 of 147
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)