Exam 16: Integrating Functions of Several Variables

arrow

11,733 students have unlocked this exam

  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the integral 03y/30ey2dxdy\int _ { 0 } ^ { 3 } \int _ { - y / 3 } ^ { 0 } e ^ { y ^ { 2 } } d x d y .Give your answer to two decimal places.

(Short Answer)
4.8/5
(26)

Let x and y have joint density function p(x,y)={x+y if 0x1,0y10 otherwise p ( x , y ) = \left\{ \begin{array} { l l } x + y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\0 & \text { otherwise }\end{array} \right. Find the probability that x > y +0.4.

(Short Answer)
4.8/5
(44)

Set up (but do not evaluate)an iterated integral to compute the mass of the solid paraboloid bounded by z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z = 1, if the density is given by δ\delta (x, y, z)= z2.

(Multiple Choice)
4.9/5
(39)

A solid is bounded below by the triangle z = 0, x \ge 0, y \ge 0, x + y \le 1 and above by the plane z = x + 6y + 2.If the density of the solid is given by δ\delta (x, y, z)= z, find its mass.

(Essay)
4.8/5
(35)

Set up the three-dimensional integral RydV\int _ { R } y d V where R is the "ice-cream cone" enclosed by a sphere of radius 2 centered at the origin and the cone z=3x2+3y2z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } .Use rectangular coordinates.  Set up the three-dimensional integral  \int _ { R } y d V  where R is the ice-cream cone enclosed by a sphere of radius 2 centered at the origin and the cone  z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } }  .Use rectangular coordinates.

(Multiple Choice)
4.7/5
(42)

Let R be the region bounded between the two ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 4 Use this change of coordinates x=3rcost,y=2rsintx=3 r \cos t, y=2 r \sin t for r0,0t2πr \geq 0,0 \leq t \leq 2 \pi to evaluate the integral R(4x2+9y2)dA\int _ { R } \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) d A

(Multiple Choice)
4.8/5
(40)

Find the mass of the solid cylinder x2+y225x ^ { 2 } + y ^ { 2 } \leq 25 , 4Z64 \leq Z \leq 6 with density function f(x,y,z)=z+x2+y2f ( x , y , z ) = z + x ^ { 2 } + y ^ { 2 }

(Essay)
4.8/5
(38)

Compute the area of the flower-like region bounded by r = 6 + 3 cos (8 θ\theta ).

(Essay)
4.8/5
(41)

The joint density function for random variables x and y is f(x,y)={121(x+y) if 0x3,0y20 otherwise f ( x , y ) = \left\{ \begin{array} { c c } \frac { 1 } { 21 } ( x + y ) & \text { if } 0 \leq x \leq 3,0 \leq y \leq 2 \\0 & \text { otherwise }\end{array} \right. Find the probability P(x2.5,y0.2)P ( x \leq 2.5 , y \geq 0.2 ) .Give your answer to 3 decimal places.

(Short Answer)
4.8/5
(30)

Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are (3n2+8n+24)/n2\left( 3 n ^ { 2 } + 8 n + 24 \right) / n ^ { 2 } and (3n2+7n+8)/n2\left( 3 n ^ { 2 } + 7 n + 8 \right) / n ^ { 2 } respectively.Evaluate RfdA\int _ { R } f d A

(Short Answer)
4.8/5
(41)

Let f(x, y)be a positive function of x and y which is independent of x, that is, f(x, y)= g(y)for some one-variable function g.Suppose that 03g(x)dx=10\int _ { 0 } ^ { 3 } g ( x ) d x = 10 and 010g(x)dx=1\int _ { 0 } ^ { 10 } g ( x ) d x = 1 . Find RfdA\int _ { R } f d A , where R is the rectangle 0 \le x \le 3, 0 \le y \le 10.

(Short Answer)
4.9/5
(40)

Consider the volume between a cone centered along the positive z-axis, with vertex at the origin and containing the point (0, 1, 1), and a sphere of radius 3 centered at the origin. Write a triple integral which represents this volume and evaluate it.Use spherical coordinates.

(Essay)
4.8/5
(34)

Convert the integral to polar coordinates. 1112x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x

(Multiple Choice)
4.7/5
(39)

The function f(x,y)=cx2+5yf ( x , y ) = c x ^ { 2 } + 5 y has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a.

(Short Answer)
4.8/5
(31)

The function f(x)=kx2+4yf ( x ) = k x ^ { 2 } + 4 y has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k.

(Short Answer)
4.8/5
(34)

Evaluate the integral 461116y216y21x2+y2dxdydz\int _ { 4 } ^ { 6 } \int _ { - 1 } ^ { - 1 } \int _ { - \sqrt { 16 - y ^ { 2 } } } ^ { \sqrt { 16 - y ^ { 2 } } } \frac { 1 } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y d z in cylindrical coordinates.

(Essay)
4.8/5
(42)
Showing 61 - 76 of 76
close modal

Filters

  • Essay(39)
  • Multiple Choice(17)
  • Short Answer(18)
  • True False(2)
  • Matching(0)