Exam 4: Number Theory and Cryptography

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find adivm and amodm when a=511,m=113a \operatorname { div } m \text { and } a \bmod m \text { when } a = 511 , m = 113

(Short Answer)
4.9/5
(40)

find the sum and product of each of these pairs of numbers. Express your answer as a hexadecimal expansion. - (E3 A)16,( B5 F8)16( \mathrm { E } 3 \mathrm {~A} ) _ { 16 } , ( \mathrm {~B} 5 \mathrm {~F} 8 ) _ { 16 }

(Short Answer)
4.8/5
(33)

Use the Euclidean Algorithm to find gcd(390, 72).

(Short Answer)
4.8/5
(40)

Find the prime factorization of 8,827.

(Short Answer)
4.9/5
(30)

Use the Vigen`ere cipher with key NOW to encrypt the message SUMMER.

(Short Answer)
4.7/5
(36)

Convert (10,000)10 to base 2.

(Short Answer)
4.9/5
(34)

Solve the linear congruence 54x12(mod73) given that the inverse of 54 modulo 73 is 2354 x \equiv 12 ( \bmod 73 ) \text { given that the inverse of } 54 \text { modulo } 73 \text { is } 23 \text {. }

(Short Answer)
4.7/5
(27)

Prove: if n is an integer that is not a multiple of 4,  then n20mod4 or n21mod4\text { then } n ^ { 2 } \equiv 0 \bmod 4 \text { or } n ^ { 2 } \equiv 1 \bmod 4 \text {. }

(Short Answer)
4.9/5
(33)

What does a 60-second stop watch read 82 seconds after it reads 27 seconds?

(Short Answer)
4.8/5
(39)

Find the integer a such that a=71(mod41) and 160a200a = 71 ( \bmod 41 ) \text { and } 160 \leq a \leq 200

(Short Answer)
4.7/5
(41)

Solve the linear congruence 2x5(mod9)2 x \equiv 5 ( \bmod 9 )

(Short Answer)
4.7/5
(28)

suppose that a and b are integers, a4(mod7), and b6(mod7). Find the integer c with 0c6a \equiv 4 ( \bmod 7 ) , \text { and } b \equiv 6 ( \bmod 7 ) . \text { Find the integer } c \text { with } 0 \leq c \leq 6 such that - c5b(mod7)c \equiv 5 b ( \bmod 7 )

(Short Answer)
4.7/5
(41)

What does a 60-second stop watch read 54 seconds before it reads 19 seconds?

(Short Answer)
5.0/5
(25)

Encrypt the message NEED HELP by translating the letters into numbers (A=0, B=1, . . ., Z=25), applying the encryption function f(p)=(3p+7)mod26f ( p ) = ( 3 p + 7 ) \bmod 26 and then translating the numbers back into letters.

(Short Answer)
4.8/5
(31)

suppose that a and b are integers, a4(mod7), and b6(mod7). Find the integer c with 0c6a \equiv 4 ( \bmod 7 ) , \text { and } b \equiv 6 ( \bmod 7 ) . \text { Find the integer } c \text { with } 0 \leq c \leq 6 such that - ca2b2(mod7)c \equiv a ^ { 2 } - b ^ { 2 } ( \bmod 7 )

(Short Answer)
4.9/5
(41)

Prove: if n is an integer that is not a multiple of 3,  then n21mod3\text { then } n ^ { 2 } \equiv 1 \bmod 3

(Short Answer)
4.9/5
(32)

Express gcd(450, 120) as a linear combination of 120 and 450.

(Short Answer)
4.9/5
(37)

Find the discrete logarithms of 5 and 8 to the base 7 modulo 13.

(Short Answer)
4.9/5
(38)

Encrypt the message BALL using the RSA system with n=3773n = 37 \cdot 73 and e=7e = 7 , translating each letter into integers (A=00, B=01,)( \mathrm { A } = 00 , \mathrm {~B} = 01 , \ldots ) and grouping together pairs of integers.

(Short Answer)
4.9/5
(30)

Encode the message "stop at noon" using the function f(x)=(x+6)mod26f ( x ) = ( x + 6 ) \bmod 26

(Short Answer)
4.9/5
(26)
Showing 61 - 80 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)