Exam 4: Number Theory and Cryptography

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Encrypt the message CANCEL THE ORDER using blocks of seven letters and the transposition cipher based on the permutation of {1,2,3,4,5,6,7} with σ(1)=5,σ(2)=3,σ(3)=6,σ(4)=1,σ(5)=7,σ(6)=2\sigma ( 1 ) = 5 , \sigma ( 2 ) = 3 , \sigma ( 3 ) = 6 , \sigma ( 4 ) = 1 , \sigma ( 5 ) = 7 , \sigma ( 6 ) = 2 , and σ(7)=4\sigma ( 7 ) = 4

(Short Answer)
4.8/5
(28)

Convert (100 1100 0011)2 to base 16 .

(Short Answer)
4.7/5
(37)

determine whether each of the following "theorems" is true or false. Assume that a, b, c, d, and m are integers with m > 1. -  If ab(modm), then 2a2b(mod2m)\text { If } a \equiv b ( \bmod m ) , \text { then } 2 a \equiv 2 b ( \bmod 2 m )

(True/False)
4.8/5
(33)

Use Fermat's little theorem to  find 945mod23\text { find } 9 ^ { 45 } \bmod 23 \text {. }

(Short Answer)
4.7/5
(41)

find the sum and product of each of these pairs of numbers. Express your answer as a base 3 expansion. - (202)3,(122)3( 202 ) _ { 3 } , ( 122 ) _ { 3 }

(Short Answer)
5.0/5
(38)

Express gcd(84, 18) as a linear combination of 18 and 84.

(Short Answer)
4.9/5
(37)

determine whether each of the following "theorems" is true or false. Assume that a, b, c, d, and m are integers with m > 1. -  If ab(mod2m), then ab(modm)\text { If } a \equiv b ( \bmod 2 m ) \text {, then } a \equiv b ( \bmod m ) \text {. }

(True/False)
4.7/5
(40)

Use the Euclidean algorithm to find gcd(44, 52).

(Short Answer)
4.9/5
(42)

Find 50!mod5050 ! \bmod 50

(Short Answer)
4.8/5
(28)

Use the Vigen`ere cipher with key LOCK to encrypt the message NEXT FALL.

(Short Answer)
4.8/5
(37)

determine whether each of the following "theorems" is true or false. Assume that a, b, c, d, and m are integers with m > 1. -  If ab(modm) and cd(modm), then acb+d(modm)\text { If } a \equiv b ( \bmod m ) \text { and } c \equiv d ( \bmod m ) , \text { then } a c \equiv b + d ( \bmod m )

(True/False)
4.9/5
(37)

determine whether each of the following "theorems" is true or false. Assume that a, b, c, d, and m are integers with m > 1. -  If ab(modm), and ac(modm), then ab+c(modm)\text { If } a \equiv b ( \bmod m ) \text {, and } a \equiv c ( \bmod m ) , \text { then } a \equiv b + c ( \bmod m )

(True/False)
4.9/5
(38)

Eitherno suchfindinteger.an integer x such that x ≡ 2 (mod 6) and x ≡ 3 (mod 9) are both true, or else prove that there is

(Short Answer)
4.9/5
(28)

Use the Euclidean algorithm to find gcd(203, 101).

(Short Answer)
4.8/5
(36)
Showing 141 - 154 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)