Exam 6: Matrices and Determinants and Applications

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Perform the indicated operations. -Find -5A - 4B. A=[384469]A = \left[ \begin{array} { r r r } 3 & - 8 & - 4 \\ - 4 & 6 & 9 \end{array} \right] and B=[451456]B = \left[ \begin{array} { r r r } - 4 & 5 & - 1 \\ - 4 & 5 & - 6 \end{array} \right]

(Multiple Choice)
4.9/5
(37)

Solve the system, if possible, by using Cramer's rule. If Cramer's rule does not apply, solve the system by using another method. - -12(x+y)=-4x-28 -2x=3y-7

(Multiple Choice)
4.9/5
(38)

Perform the elementary row operation on the given matrix. - 5R1+R3R3- 5 R _ { 1 } + R _ { 3 } \rightarrow R _ { 3 } [1165371858512913]\left[ \begin{array} { r r r | r } 1 & 16 & 5 & 3 \\ 7 & 18 & 5 & 8 \\ 5 & 12 & 9 & 13 \end{array} \right]

(Multiple Choice)
4.7/5
(40)

Write the word or phrase that best completes each statement or answers the question. Provide the missing information. -Given an n × n matrix A, if there exists a matrix A1A ^ { - 1 } such that AA1=In and A1A=In, then A1 is A \cdot A ^ { - 1 } = I _ { n } \text { and } A ^ { - 1 } \cdot A = I _ { n } \text {, then } A ^ { - 1 } \text { is } called the ________of A.

(Short Answer)
4.8/5
(26)

Solve the system using Gaussian elimination or Gauss-Jordan elimination. - 5x+9z=-16+6y 8x=7y+7z-141 8z=-2y-2x+42

(Multiple Choice)
4.9/5
(39)

Determine the solution set for the system represented by the augmented matrix. - [107401610001]\left[ \begin{array} { r r r | r } 1 & 0 & - 7 & 4 \\ 0 & 1 & 6 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right]

(Multiple Choice)
4.8/5
(31)

Evaluate the determinant of the given matrix and state whether the matrix is invertible. - A=[0.91.7812.73.50.41.4568.84.4223.511.48.2]A = \left[ \begin{array} { r r r r } 0.9 & 1.7 & 8 & 12.7 \\- 3.5 & 0.4 & - 1.4 & 5 \\6 & 8.8 & - 4.4 & 2 \\- 2 & 3.5 & 11.4 & - 8.2\end{array} \right]

(Multiple Choice)
4.8/5
(26)

Write the word or phrase that best completes each statement or answers the question. Provide the missing information. -If a system of linear equations has no solution, then the system is said to be________ .

(Short Answer)
4.9/5
(47)

Give the order of the matrix. Classify the matrix as a square matrix, row matrix, column matrix, or none of these. - [15872225π010.611]\left[ \begin{array} { c c c c } 1 & 5 & 8 & 7 \\- 2 & 2 & \frac { 2 } { 5 } & \pi \\0 & 1 & 0.6 & 11\end{array} \right]

(Multiple Choice)
4.9/5
(30)

A rectangular array of elements is called a________ .

(Short Answer)
4.7/5
(36)

Solve the system, if possible, by using Cramer's rule. If Cramer's rule does not apply, solve the system by using another method. - -6x-3y=2 -12x+15y=-6

(Multiple Choice)
4.8/5
(26)

Write the word or phrase that best completes each statement or answers the question. Provide the missing information. -If A is a 5×35 \times 3 3 matrix and B is a 3×73 \times 7 trix, then the product AB will be a matrix of order________. The product BA (is/is not) defined.

(Short Answer)
4.8/5
(31)

Evaluate the determinant of the given matrix and state whether the matrix is invertible. - A=[1204031321044040]A = \left[ \begin{array} { r r r r } 1 & 2 & 0 & 4 \\0 & 3 & - 1 & 3 \\2 & 1 & 0 & 4 \\- 4 & 0 & 4 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Solve the problem. -A street vendor at a parade sells fresh lemonade, soda, bottled water, and iced-tea, and the unit price for each item is given in matrix P. The number of units sold of each item is given in matrix N.Compute NP and interpret the result. \quad  Lemonade \text { Lemonade } \quad  Soda \text { Soda } \quad  Water \text { Water } \quad  Tea  \text { Tea } N= 120 280 370 70 P=[$3.00 Lemonade $2.00 Soda $1.00 Water $1.50] Tea P = \left[ \begin{array} { l | l } \$ 3.00 & \text { Lemonade } \\\$ 2.00 & \text { Soda } \\\$ 1.00 & \text { Water } \\\$ 1.50\end{array} \right] \text { Tea }

(Multiple Choice)
4.9/5
(33)

Find AB, if possible. - A=[441758]A = \left[ \begin{array} { l l l } 4 & 4 & 1 \\ 7 & 5 & 8 \end{array} \right] and B=[673817]B = \left[ \begin{array} { c c } - 6 & 7 \\ 3 & 8 \\ 1 & 7 \end{array} \right]

(Multiple Choice)
4.9/5
(39)

Classify the matrix as a square matrix, row matrix, column matrix, or none of these. - [1553]\left[ \begin{array} { r r } 1 & 5 \\5 & - 3\end{array} \right]

(Multiple Choice)
4.9/5
(33)

Find AB, if possible. - A=[2165]A = \left[ \begin{array} { c c } 2 & - 1 \\ 6 & 5 \end{array} \right] and B=[6216]B = \left[ \begin{array} { l l } 6 & 2 \\ 1 & 6 \end{array} \right]

(Multiple Choice)
4.9/5
(43)

Solve the problem. - Solve the problem. -  The matrix  \mathrm { A } = \left[ \begin{array} { r r r } - 1 & 1 & 4 \\ 1 & 4 & 3 \end{array} \right]  represents the coordinates of the triangle. Find the product  \left[ \begin{array} { r r } 1 & 0 \\ 0 & - 1 \end{array} \right] \cdot \mathrm { A }  and explain the effect on the graph of the triangle. The matrix A=[114143]\mathrm { A } = \left[ \begin{array} { r r r } - 1 & 1 & 4 \\ 1 & 4 & 3 \end{array} \right] represents the coordinates of the triangle. Find the product [1001]A\left[ \begin{array} { r r } 1 & 0 \\ 0 & - 1 \end{array} \right] \cdot \mathrm { A } and explain the effect on the graph of the triangle.

(Multiple Choice)
4.7/5
(34)

Write the word or phrase that best completes each statement or answers the question. Provide the missing information. -True or false: If a row matrix A and a column matrix B have the same number of elements, then the product AB is well defined.

(True/False)
4.8/5
(35)

Solve the system using Gaussian elimination or Gauss-Jordan elimination. - 5x-7y =-3 -6x+5y =7

(Multiple Choice)
4.7/5
(29)
Showing 121 - 140 of 154
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)