Exam 4: Polynomials and Rational Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the factor theorem to decide whether or not the second polynomial is a factor of the first. - 2x214x+60;x32 x ^ { 2 } - 14 x + 60 ; x - 3

(True/False)
4.7/5
(42)

Factor f(x) into linear factors given that k is a zero of f(x). - f(x)=x3(4+2i)x2+(5+8i)x+10i;k=2if ( x ) = x ^ { 3 } - ( 4 + 2 i ) x ^ { 2 } + ( - 5 + 8 i ) x + 10 i ; k = 2 i

(Multiple Choice)
4.9/5
(29)

Use the boundedness theorem to determine whether the polynomial function satisfies the given condition. -The polynomial f(x) f(x)=x4x3+2x24x10f ( x ) = x ^ { 4 } - x ^ { 3 } + 2 x ^ { 2 } - 4 x - 10 has no real zero greater than 3.

(Multiple Choice)
4.8/5
(32)

Use the remainder theorem and synthetic division to find f(k). - k=3+i;f(x)=x3+9k = 3 + i ; f ( x ) = x ^ { 3 } + 9

(Multiple Choice)
4.8/5
(35)

Use synthetic division to perform the division. - 2x313x2+23x12x4\frac { 2 x ^ { 3 } - 13 x ^ { 2 } + 23 x - 12 } { x - 4 }

(Multiple Choice)
4.9/5
(31)

Sketch the graph of the rational function. - f(x)=5x(x5)(x1)f ( x ) = \frac { 5 x } { ( x - 5 ) ( x - 1 ) }  Sketch the graph of the rational function. - f ( x ) = \frac { 5 x } { ( x - 5 ) ( x - 1 ) }

(Multiple Choice)
4.8/5
(40)

Solve the problem. Round your answer to two decimal places. -The weight of a liquid varies directly as its volume V. If the weight of the liquid in a cubical container 5 cm on a side is 375 g, find the weight of the liquid in a cubical container 3 cm on a side.

(Multiple Choice)
4.9/5
(38)

Find a polynomial of least degree with only real coefficients and having the given zeros. - 3,113 , - 11 , and 4+4i4 + 4 i

(Multiple Choice)
4.8/5
(38)

Use the equation and the corresponding graph for the quadratic function to find what is requested. - f(x)=(x3)24f(x)=(x-3)^{2}-4  Use the equation and the corresponding graph for the quadratic function to find what is requested. - f(x)=(x-3)^{2}-4     Find the  x -intercepts. Find the xx -intercepts.

(Multiple Choice)
4.9/5
(38)

Use Descartes' Rule of Signs to determine the possible number of positive real zeros and the possible number of negative real zeros for the function. - f(x)=2x44x34x23x+8f ( x ) = - 2 x ^ { 4 } - 4 x ^ { 3 } - 4 x ^ { 2 } - 3 x + 8

(Multiple Choice)
4.8/5
(29)

x and y are two positive numbers and y is three greater than x. The product of the numbers is 130. Find the smaller number, x.

(Multiple Choice)
4.9/5
(35)

 How can the graph of f(x)=1x26 be obtained from the graph of y=1x2?\text { How can the graph of } f ( x ) = - \frac { 1 } { x ^ { 2 } } - 6 \text { be obtained from the graph of } y = \frac { 1 } { x ^ { 2 } } ?

(Multiple Choice)
4.8/5
(34)

Determine whether the statement is true or false. - f(x)=2x+3f(x)=\frac{2}{x+3}  Determine whether the statement is true or false. - f(x)=\frac{2}{x+3}

(Multiple Choice)
4.9/5
(35)

Use Descartes' Rule of Signs to determine the possible number of positive real zeros and the possible number of negative real zeros for the function. - f(x)=2x38x2+8x+2f ( x ) = 2 x ^ { 3 } - 8 x ^ { 2 } + 8 x + 2

(Multiple Choice)
4.9/5
(39)

Give the equations of any horizontal asymptotes. - h(x)=27x29x28h ( x ) = \frac { 27 x ^ { 2 } } { 9 x ^ { 2 } - 8 }

(Multiple Choice)
5.0/5
(38)

 If f varies jointly as q2 and h, and f=36 when q=2 and h=3, find f when q=4 and h=6\text { If } \mathrm { f } \text { varies jointly as } \mathrm { q } ^ { 2 } \text { and } h \text {, and } \mathrm { f } = 36 \text { when } \mathrm { q } = 2 \text { and } h = 3 \text {, find } \mathrm { f } \text { when } \mathrm { q } = 4 \text { and } \mathrm { h } = 6 \text {. }

(Multiple Choice)
4.9/5
(42)

The graph of f(x)=x3+4x2x4f ( x ) = x ^ { 3 } + 4 x ^ { 2 } - x - 4 is shown below. Use the graph to factor f(x)f ( x ) .  The graph of  f ( x ) = x ^ { 3 } + 4 x ^ { 2 } - x - 4  is shown below. Use the graph to factor  f ( x ) .

(Multiple Choice)
4.8/5
(35)

Find the domain and range of the function. f(x)=x218x+84f ( x ) = x ^ { 2 } - 18 x + 84

(Multiple Choice)
4.8/5
(41)

Use the boundedness theorem to determine whether the polynomial function satisfies the given condition. -The polynomial f(x) f(x)=x5+10x425x310x2+24xf ( x ) = x ^ { 5 } + 10 x ^ { 4 } - 25 x ^ { 3 } - 10 x ^ { 2 } + 24 x has no real zero less than -8.

(Multiple Choice)
4.9/5
(38)

Why does a function defined by a polynomial of degree five with real coefficients have either 1, 3, or 5 real zeros counting multiplicities?

(Essay)
4.9/5
(31)
Showing 121 - 140 of 517
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)