Exam 8: Sequences, Series, and Combinatorics

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the indicated quantity. - a31a _ { 31 } , when a1=1\mathrm { a } _ { 1 } = 1 and d=76\mathrm { d } = - \frac { 7 } { 6 }

(Multiple Choice)
4.7/5
(41)

Find the nth, or general, term. - 25,5,1,25,5,1 , \ldots

(Multiple Choice)
4.9/5
(42)

Expand. - (5x3x)4\left( \frac { 5 } { x } - 3 x \right) ^ { 4 }

(Multiple Choice)
4.8/5
(27)

Use mathematical induction to prove the following. - (112)(113)(11n+1)=1n+1\left( 1 - \frac { 1 } { 2 } \right) \left( 1 - \frac { 1 } { 3 } \right) \ldots \left( 1 - \frac { 1 } { n + 1 } \right) = \frac { 1 } { n + 1 }

(Essay)
4.7/5
(28)

Use mathematical induction to prove the following. - 6+12+18++6n=3n(n+1)6 + 12 + 18 + \ldots + 6 n = 3 n ( n + 1 )

(Essay)
4.8/5
(29)

Find the sum, if it exists. - 89+81872964+8 - 9 + \frac { 81 } { 8 } - \frac { 729 } { 64 } + \ldots

(Multiple Choice)
4.7/5
(37)

Use mathematical induction to prove the following. - i=1n(5i+8)=n(5n+21)2\sum _ { i = 1 } ^ { n } ( 5 i + 8 ) = \frac { n ( 5 n + 21 ) } { 2 }

(Essay)
4.9/5
(23)

Use mathematical induction to prove the following. - 13+24+35++n(n+2)=n(n+1)(2n+7)61 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + \ldots + n ( n + 2 ) = \frac { n ( n + 1 ) ( 2 n + 7 ) } { 6 }

(Essay)
5.0/5
(40)

Find the nth, or general, term. - 17,149,1343,\frac { 1 } { 7 } , \frac { 1 } { 49 } , \frac { 1 } { 343 } , \ldots

(Multiple Choice)
4.8/5
(26)

Solve. -How many 4-letter codes can be formed with the letters A, B, C, D, E, F, G, H with repetition?

(Multiple Choice)
4.8/5
(33)

Find the indicated term of the binomial expansion. -5 th term; (2x+5)5( 2 x + 5 ) ^ { 5 }

(Multiple Choice)
4.8/5
(33)

Evaluate. - 20P4{ } _ { 20 } \mathrm { P } _ { 4 }

(Multiple Choice)
4.9/5
(33)
Showing 81 - 92 of 92
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)