Exam 8: Sequences, Series, and Combinatorics

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find fraction notation. - 0.8585850.8585 \overline { 85 }

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

B

Solve the problem. - 46P1046 ^ { \mathrm { P } } 10

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

A

Find the sum, if it exists. - i=110(52)i1\sum _ { i = 1 } ^ { \infty } 10 \left( - \frac { 5 } { 2 } \right) ^ { i - 1 }

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

D

Evaluate. - (125)\left( \begin{array} { c } 12 \\ 5 \end{array} \right)

(Multiple Choice)
4.8/5
(30)

Find the sum. - i=16(5i4)\sum _ { i = 1 } ^ { 6 } ( 5 i - 4 )

(Multiple Choice)
4.8/5
(30)

Solve the problem. - 20C420 C _ { 4 }

(Multiple Choice)
4.9/5
(35)

Evaluate. - 5!3!\frac { 5 ! } { 3 ! }

(Multiple Choice)
4.9/5
(32)

Solve. -A pendulum bob swings 5.0 cm5.0 \mathrm {~cm} on its first oscillation. On each subsequent oscillation the bob travels 25\frac { 2 } { 5 } of the previous distance. Find the total distance the bob travels before coming to rest.

(Multiple Choice)
4.9/5
(38)

Use mathematical induction to prove the following. -  If a is a constant and 0<a<1, then an<an1\text { If } a \text { is } a \text { constant and } 0 < a < 1 \text {, then } a ^ { n } < a ^ { n - 1 } \text {. }

(Essay)
4.8/5
(32)

Use mathematical induction to prove the following. - 12+23+34++n(n+1)=n(n+1)(n+2)31 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n ( n + 1 ) = \frac { n ( n + 1 ) ( n + 2 ) } { 3 }

(Essay)
4.7/5
(34)

Find the first 4 terms of the recursively defined sequence. - a1=2,an+1=(1)nana _ { 1 } = 2 , a _ { n } + 1 = \frac { ( - 1 ) ^ { n } } { a _ { n } }

(Multiple Choice)
4.8/5
(35)

Evaluate the sum. - i=053i\sum _ { i = 0 } ^ { 5 } 3 ^ { i }

(Multiple Choice)
4.7/5
(38)

Determine how many of the first 5 statements in the sequence obtainable from the given statement are true. - n2+2n+1n ^ { 2 } + 2 n + 1 is a perfect square.

(Multiple Choice)
4.9/5
(30)

Find the indicated quantity. - a1a _ { 1 } , when d=3d = - 3 and a36=93a _ { 36 } = - 93

(Multiple Choice)
4.8/5
(37)

Evaluate the sum. - k=010(1)k\sum _ { \mathrm { k } = 0 } ^ { 10 } ( - 1 ) ^ { \mathrm { k } }

(Multiple Choice)
5.0/5
(41)

Evaluate the sum. - k=14(1)k(k+3)\sum _ { \mathrm { k } = 1 } ^ { 4 } ( - 1 ) ^ { \mathrm { k } } ( \mathrm { k } + 3 )

(Multiple Choice)
4.8/5
(38)

Find the indicated term of the sequence. - an=2n2;a10a _ { n } = 2 n - 2 ; a _ { 10 }

(Multiple Choice)
4.9/5
(36)

Solve. -Suppose 6 cards are drawn from a deck of 52 cards. What is the probability of drawing 3 spades and 3 hearts?

(Multiple Choice)
4.8/5
(36)

Find the indicated sum. -Find the sum of the first 13 terms of the geometric sequence: 12,1,2,4,8,\frac { 1 } { 2 } , - 1,2 , - 4,8 , \ldots

(Multiple Choice)
4.8/5
(31)

Solve the problem. -An experiment was conducted. The results are listed in the following table. Solve the problem. -An experiment was conducted. The results are listed in the following table.       What are the values of c and f? What are the values of c and f?

(Multiple Choice)
4.9/5
(41)
Showing 1 - 20 of 92
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)