Exam 4: Polynomial and Rational Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve. -There are nn people in a room. The number NN of possible handshakes by all the people in the room is given by the function N(n)=n(n1)2N ( n ) = \frac { n ( n - 1 ) } { 2 } . For what number n of people is 91N19091 \leq N \leq 190 ?

(Multiple Choice)
4.7/5
(43)

For the function find the maximum number of real zeros that the function can have, the maximum number of x-intercepts that the function can have, and the maximum number of turning points that the graph of the function can have. - f(x)=x6+8x5x24x+9f ( x ) = - x ^ { 6 } + 8 x ^ { 5 } - x ^ { 2 } - 4 x + 9

(Multiple Choice)
4.8/5
(35)

Match the equation with the appropriate graph. - f(x)=6xx21f ( x ) = \frac { 6 x } { x ^ { 2 } - 1 }

(Multiple Choice)
4.9/5
(38)

Use synthetic division to find the function value. - f(x)=x510x4+15x34x300;f ( x ) = x ^ { 5 } - 10 x ^ { 4 } + 15 x ^ { 3 } - 4 x - 300 ; find f(2)f ( 2 )

(Multiple Choice)
5.0/5
(35)

List the critical values of the related function. Then solve the inequality. - 3x24x+35x29\frac { 3 } { x ^ { 2 } - 4 x + 3 } \leq \frac { 5 } { x ^ { 2 } - 9 }

(Multiple Choice)
4.9/5
(33)

Given that the polynomial function has the given zero, find the other zeros. - f(x)=x49;3f ( x ) = x ^ { 4 } - 9 ; \sqrt { 3 }

(Multiple Choice)
4.9/5
(29)

List the critical values of the related function. Then solve the inequality. - xx2+3x4+2x2162xx25x+4\frac { x } { x ^ { 2 } + 3 x - 4 } + \frac { 2 } { x ^ { 2 } - 16 } \leq \frac { 2 x } { x ^ { 2 } - 5 x + 4 }

(Multiple Choice)
4.8/5
(42)

Match the equation with the appropriate graph. - f(x)=18x29f ( x ) = \frac { 18 } { x ^ { 2 } - 9 }

(Multiple Choice)
4.8/5
(41)

Find the zeros of the polynomial function and state the multiplicity of each. - f(x)=(x+2)2(x1)f ( x ) = ( x + 2 ) ^ { 2 } ( x - 1 )

(Multiple Choice)
4.7/5
(37)

Find only the rational zeros. - f(x)=x4+25f ( x ) = x ^ { 4 } + 25

(Multiple Choice)
4.9/5
(33)

Solve the problem. -A stone thrown downward with an initial velocity of 19.6 m/sec19.6 \mathrm {~m} / \mathrm { sec } will travel a distance of ss meters, where s(t)=4.9t2+19.6t\mathrm { s } ( \mathrm { t } ) = 4.9 \mathrm { t } ^ { 2 } + 19.6 \mathrm { t } and t\mathrm { t } is in seconds. If a stone is thrown downward at 19.6 m/sec19.6 \mathrm {~m} / \mathrm { sec } from a height of 294 m294 \mathrm {~m} , how long will it take the stone to hit the ground? Round your answer to the nearest second.

(Multiple Choice)
4.9/5
(31)

Solve the given inequality (a related function is graphed). - 5xx290\frac { 5 x } { x ^ { 2 } - 9 } \geq 0  Solve the given inequality (a related function is graphed). - \frac { 5 x } { x ^ { 2 } - 9 } \geq 0

(Multiple Choice)
4.7/5
(33)

Use Descartes' Rule of Signs to determine the possible number of positive real zeros and the possible number of negative real zeros for the function. - P(x)=5x4+4x37x2+5x4P ( x ) = - 5 x ^ { 4 } + 4 x ^ { 3 } - 7 x ^ { 2 } + 5 x - 4

(Multiple Choice)
4.8/5
(41)

Use the leading-term test to match the function with the correct graph. - f(x)=2x2+6f ( x ) = 2 x ^ { 2 } + 6

(Multiple Choice)
4.8/5
(35)

List the critical values of the related function. Then solve the inequality. - 1x40\frac { 1 } { x - 4 } \leq 0

(Multiple Choice)
4.9/5
(40)

Find the correct end behavior diagram for the given polynomial function. - f(x)=x55x32x+1f ( x ) = - x ^ { 5 } - 5 x ^ { 3 } - 2 x + 1  Find the correct end behavior diagram for the given polynomial function. - f ( x ) = - x ^ { 5 } - 5 x ^ { 3 } - 2 x + 1

(Short Answer)
5.0/5
(41)

Match the equation with the appropriate graph. - f(x)=18x2+9f ( x ) = \frac { 18 } { x ^ { 2 } + 9 }

(Multiple Choice)
4.8/5
(38)

Classify the polynomial as constant, linear, quadratic, cubic, or quartic, and determine the leading term, the leading coefficient, and the degree of the polynomial. - f(x)=13x2f ( x ) = - 13 - x ^ { 2 }

(Multiple Choice)
4.8/5
(40)

Solve. -An open-top rectangular box has a square base and it will hold 256 cubic centimeters (cc). Each side of the base has length x cmx \mathrm {~cm} . The box's surface area SS is given by S(x)=1024x+x2.S ( x ) = \frac { 1024 } { x } + x ^ { 2 } . Estimate the minimum surface area and the value of xx that will yield it.

(Multiple Choice)
4.7/5
(40)

Use synthetic division to find the function value. - f(x)=x32x2+5x4; find f(5)f ( x ) = x ^ { 3 } - 2 x ^ { 2 } + 5 x - 4 ; \text { find } f ( 5 )

(Multiple Choice)
4.9/5
(41)
Showing 21 - 40 of 94
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)