Exam 15: Multiple Regression Model Building
Exam 1: Introduction145 Questions
Exam 2: Organizing and Visualizing Data210 Questions
Exam 3: Numerical Descriptive Measures153 Questions
Exam 4: Basic Probability171 Questions
Exam 5: Discrete Probability Distributions218 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions191 Questions
Exam 7: Sampling and Sampling Distributions197 Questions
Exam 8: Confidence Interval Estimation196 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests165 Questions
Exam 10: Two-Sample Tests210 Questions
Exam 11: Analysis of Variance213 Questions
Exam 12: Chi-Square Tests and Nonparametric Tests201 Questions
Exam 13: Simple Linear Regression213 Questions
Exam 14: Introduction to Multiple Regression355 Questions
Exam 15: Multiple Regression Model Building96 Questions
Exam 16: Time-Series Forecasting168 Questions
Exam 17: Statistical Applications in Quality Management133 Questions
Exam 18: A Roadmap for Analyzing Data54 Questions
Exam 19: Questions that Involve Online Topics321 Questions
Select questions type
TABLE 15-3
A chemist employed by a pharmaceutical firm has developed a muscle relaxant.She took a sample of 14 people suffering from extreme muscle constriction.She gave each a vial containing a dose (X)of the drug and recorded the time to relief (Y)measured in seconds for each.She fit a "centered" curvilinear model to this data.The results obtained by Microsoft Excel follow,where the dose (X)given has been "centered."
-Referring to Table 15-3,suppose the chemist decides to use a t test to determine if there is a significant difference between a linear model and a curvilinear model that includes a linear term.If she used a level of significance of 0.01,she would decide that the linear model is sufficient.

(True/False)
4.9/5
(41)
TABLE 15-4
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state.
Let Y = % Passing as the dependent variable,X₁ = % Attendance,X₂ = Salaries and X₃ = Spending.
The coefficient of multiple determination (R
)of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743.
The output from the best-subset regressions is given below:
Following is the residual plot for % Attendance:
Following is the output of several multiple regression models:
Model (I):
Model (II):
Model (III):
-Referring to Table 15-4,the null hypothesis should be rejected when testing whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance.






(True/False)
4.9/5
(36)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X₁),the number of years of education received (X₂),the number of years at the previous job (X₃),a dummy variable for marital status (X₄: 1 = married,0 = otherwise),a dummy variable for head of household (X₅: 1 = yes,0 = no)and a dummy variable for management position (X₆: 1 = yes,0 = no).
The coefficient of multiple determination (R2J )for the regression model using each of the 6 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,the model that includes all six independent variables should be selected using the adjusted r² statistic.

(True/False)
4.8/5
(35)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X₁),the number of years of education received (X₂),the number of years at the previous job (X₃),a dummy variable for marital status (X₄: 1 = married,0 = otherwise),a dummy variable for head of household (X₅: 1 = yes,0 = no)and a dummy variable for management position (X₆: 1 = yes,0 = no).
The coefficient of multiple determination (R2J )for the regression model using each of the 6 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,the model that includes all the six independent variables should be among the appropriate models using the Mallow's Cp statistic.

(True/False)
4.8/5
(35)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X₁),the number of years of education received (X₂),the number of years at the previous job (X₃),a dummy variable for marital status (X₄: 1 = married,0 = otherwise),a dummy variable for head of household (X₅: 1 = yes,0 = no)and a dummy variable for management position (X₆: 1 = yes,0 = no).
The coefficient of multiple determination (R2J )for the regression model using each of the 6 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,what is the value of the variance inflationary factor of Manager?

(Short Answer)
4.9/5
(22)
An independent variable Xⱼ is considered highly correlated with the other independent variables if
(Multiple Choice)
4.8/5
(34)
As a project for his business statistics class,a student examined the factors that determined parking meter rates throughout the campus area.Data were collected for the price per hour of parking,blocks to the quadrangle,and one of the three jurisdictions: on campus,in downtown and off campus,or outside of downtown and off campus.The population regression model hypothesized is Yᵢ = β₀ + β₁X₁ᵢ + β₂X₂ᵢ + β₃X₃ᵢ + ε where
Y is the meter price
X₁ is the number of blocks to the quad
X₂ is a dummy variable that takes the value 1 if the meter is located in downtown and off campus and the value 0 otherwise
X₃ is a dummy variable that takes the value 1 if the meter is located outside of downtown and off campus,and the value 0 otherwise
Suppose that whether the meter is located on campus is an important explanatory factor.Why should the variable that depicts this attribute not be included in the model?
(Multiple Choice)
5.0/5
(29)
Using the best-subsets approach to model building,models are being considered when their
(Multiple Choice)
4.8/5
(39)
TABLE 15-5
What are the factors that determine the acceleration time (in sec.)from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected:
Accel Time: Acceleration time in sec.
Cargo Vol: Cargo volume in cu.ft.
HP: Horsepower
MPG: Miles per gallon
SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0
Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0
The coefficient of multiple determination (R
)for the regression model using each of the 5 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.7461,0.5676,0.6764,0.8582,0.6632.
-Referring to Table 15-5,what is the value of the variance inflationary factor of HP?

(Short Answer)
4.8/5
(34)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X₁),the number of years of education received (X₂),the number of years at the previous job (X₃),a dummy variable for marital status (X₄: 1 = married,0 = otherwise),a dummy variable for head of household (X₅: 1 = yes,0 = no)and a dummy variable for management position (X₆: 1 = yes,0 = no).
The coefficient of multiple determination (R2J )for the regression model using each of the 6 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,what is the value of the variance inflationary factor of Age?

(Short Answer)
4.7/5
(38)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X₁),the number of years of education received (X₂),the number of years at the previous job (X₃),a dummy variable for marital status (X₄: 1 = married,0 = otherwise),a dummy variable for head of household (X₅: 1 = yes,0 = no)and a dummy variable for management position (X₆: 1 = yes,0 = no).
The coefficient of multiple determination (R2J )for the regression model using each of the 6 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,the variable X₂ should be dropped to remove collinearity.

(True/False)
4.8/5
(35)
TABLE 15-4
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing),daily mean of the percentage of students attending class (% Attendance),mean teacher salary in dollars (Salaries),and instructional spending per pupil in dollars (Spending)of 47 schools in the state.
Let Y = % Passing as the dependent variable,X₁ = % Attendance,X₂ = Salaries and X₃ = Spending.
The coefficient of multiple determination (R
)of each of the 3 predictors with all the other remaining predictors are,respectively,0.0338,0.4669,and 0.4743.
The output from the best-subset regressions is given below:
Following is the residual plot for % Attendance:
Following is the output of several multiple regression models:
Model (I):
Model (II):
Model (III):
-Referring to Table 15-4,which of the following models should be taken into consideration using the Mallows' Cp statistic?






(Multiple Choice)
4.8/5
(27)
TABLE 15-5
What are the factors that determine the acceleration time (in sec.)from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected:
Accel Time: Acceleration time in sec.
Cargo Vol: Cargo volume in cu.ft.
HP: Horsepower
MPG: Miles per gallon
SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0
Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0
The coefficient of multiple determination (R
)for the regression model using each of the 5 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.7461,0.5676,0.6764,0.8582,0.6632.
-Referring to Table 15-5,there is reason to suspect collinearity between some pairs of predictors based on the values of the variance inflationary factor.

(True/False)
4.7/5
(33)
TABLE 15-6
Given below are results from the regression analysis on 40 observations where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Y)and the independent variables are the age of the worker (X₁),the number of years of education received (X₂),the number of years at the previous job (X₃),a dummy variable for marital status (X₄: 1 = married,0 = otherwise),a dummy variable for head of household (X₅: 1 = yes,0 = no)and a dummy variable for management position (X₆: 1 = yes,0 = no).
The coefficient of multiple determination (R2J )for the regression model using each of the 6 variables Xⱼ as the dependent variable and all other X variables as independent variables are,respectively,0.2628,0.1240,0.2404,0.3510,0.3342 and 0.0993.
The partial results from best-subset regression are given below:
-Referring to Table 15-6,the model that includes X₁,X₅ and X₆ should be among the appropriate models using the Mallow's Cp statistic.

(True/False)
4.9/5
(37)
Showing 81 - 96 of 96
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)