Exam 7: Conic Sections

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the reference number and the terminal point p(x,y)p ( x , y ) determined by t=11π6t = - \frac { 11 \pi } { 6 }

(Multiple Choice)
4.8/5
(44)

Use a graphing device to find the maximum and minimum values of the function y=cosx+sin2xy = \cos x + \sin 2 x

(Multiple Choice)
4.8/5
(37)

Find the approximate value of tan(1.5)\tan ( 1.5 ) using a calculator.

(Short Answer)
4.8/5
(39)

Find the vertical asymptotes for the function y=3sec12xy = 3 \sec \frac { 1 } { 2 } x in the interval [0,4π][ 0,4 \pi ] .

(Short Answer)
4.9/5
(34)

Determine whether the function is even, odd, or neither. y=sinx+cosxy = \sin x + \cos x

(Multiple Choice)
4.9/5
(40)

Find the period of the function y=15cotxy = \frac { 1 } { 5 } \cot x

(Multiple Choice)
4.8/5
(43)

Find the period of the function y=12tan(xπ3)y = \frac { 1 } { 2 } \tan \left( x - \frac { \pi } { 3 } \right) and sketch its graph.

(Essay)
4.8/5
(44)

If the terminal point determined by t is (1213,513)\left( \frac { 12 } { 13} , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\cos t and tant\tan t .

(Short Answer)
4.9/5
(33)

Find the vertical asymptotes for the function y=12csc2xy = \frac { 1 } { 2 } \csc 2 x in the interval [π,π][ - \pi , \pi ]

(Multiple Choice)
4.7/5
(28)

If cost=35\cos t = \frac { 3 } { 5 } and the terminal point for t is in quadrant IV, find Cott+CSCt\mathrm { Cot } t + \mathrm { CSC } t

(Multiple Choice)
4.9/5
(36)

Suppose that the terminal point determined by t is the point (513,1213)\left( \frac { 5 } { 13 } , \frac { 12 } { 13 } \right) on the unit circle. Find the terminal point determined by π+t\pi + t .

(Short Answer)
4.8/5
(44)

Find  sect \text { sect } given that sint=35\sin t = - \frac { 3 } { 5 } and tant>0\tan t > 0

(Multiple Choice)
4.9/5
(34)

Find period and graph the function. y=2tan(2xπ/4)y = 2 \tan ( 2 x - \pi / 4 )

(Multiple Choice)
5.0/5
(39)

Suppose that the terminal point determined by tt is the point (12,32)\left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) On the unit circle. Find the terminal point determined by πt\pi - t

(Multiple Choice)
4.8/5
(32)

Use the fundamental identities to write the first expression in terms of the second. tan2tsect,cost\tan ^ { 2 } t \sec t , \cos t

(Multiple Choice)
4.7/5
(35)

Find the sign of costsint\cos t \sin t if the terminal point determined by tt is in quadrant II.

(Short Answer)
4.8/5
(38)

Find the period of the function y=13cocxy = \frac { 1 } { 3 } \operatorname { coc } x and sketch its graph.

(Essay)
4.9/5
(38)

Sketch the graph of the function y=12tan(xπ3)y = \frac { 1 } { 2 } \tan \left( x - \frac { \pi } { 3 } \right)

(Multiple Choice)
4.8/5
(27)

Graph the function. y=2tan(xπ/4)y = 2 \tan ( x - { \pi } / 4 )

(Multiple Choice)
4.7/5
(36)

Suppose that the terminal point determined by tt is the point (513,1213)\left( \frac { 5 } { 13 } , \frac { 12 } { 13 } \right) on the unit circle. Find the terminal point determined by 2πt2 \pi - t .

(Short Answer)
5.0/5
(47)
Showing 21 - 40 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)