Exam 5: Full First-Order Logic
Exam 1: Introducing Logic40 Questions
Exam 2: Propositional Logic: Syntax and Semantic248 Questions
Exam 3: Inference in Propositional Logic308 Questions
Exam 4: Monadic Predicate Logic306 Questions
Exam 5: Full First-Order Logic300 Questions
Select questions type
(∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Qxy]
-Consider assuming '(∀x)[Px ⊃ (∃y)Qxy]' for a conditional proof of the above logical truth. Which of the
Following propositions is a legitimate second step in that proof?
(Multiple Choice)
4.8/5
(39)
select the best translation into predicate logic, using the following translation key:
b: Britain
c: Charles
e: Elizabeth
t: Tescos
Px: x is a person
Qx: x is a Queen of England
Wx: x is a woman
Exy: x is more exalted than y
Ixy: x is in y
Pxy: x shops at y
Sxy: x is a son of y
-Any son of Elizabeth or Charles is more exalted than anyone who is not Charles, Elizabeth, or a son of either.
(Multiple Choice)
4.8/5
(47)
1. (∀x)[Ax ⊃ (∃y)(By • Cxy)]
2. (∃x)(Ax • Dx)
3. (∀x)(Bx ⊃ Ex)
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?
(Multiple Choice)
4.8/5
(35)
Translate each sentence into predicate logic, using the given translation keys.
use:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-Hume is not more skeptical than some philosophers.
(Essay)
4.8/5
(35)
derive the conclusions of each of the following arguments using the rules of inference for F.
-1. (?x)(?y)Axy ? (?x)(?y)Bxy
2. (?x)(?y)?Bxy / (?x)(?y)?Axy
(Essay)
4.9/5
(43)
1. (∃x)(∃y){Gx • Gy • x≠y • (∀z)[Gz ⊃ (z=x z=y)]}
2. Ga • Gb • Gc
-Which of the following propositions is derivable from the given premises in F?
(Multiple Choice)
5.0/5
(35)
translate each sentence of predicate logic into natural, English sentences using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-(∀x)[Nx ⊃ (Ox ⊃ ∼Ex)]
(Short Answer)
4.9/5
(35)
select the best translation into predicate logic, using the following translation key:
Cx: x is a cheetah
Lx: x is a lion
Tx: x is a tiger
Fxy: x is faster than y
Lxy: x is larger than y
-No tiger is faster than all cheetahs.
(Multiple Choice)
4.9/5
(40)
select the best English interpretation of the given statements of predicate logic, using the following translation key:
t: two
Ox: x is odd
Ex: x is even
Nx: x is a number
Gxy: x is greater than y
-~(∃x)[(Nx • ∼Ex) • Gxt]
(Multiple Choice)
4.9/5
(43)
use the following translation key to write the sentences below in FF.
a: one
b: two
c: three
f(x): the successor of x
g(x,y): the sum of x and y
Nx: x is a number
Dxy: x is divisible by y
Gxy: x is greater than y
-If a number is divisible by three, then the sum of its successor with the successor of one is also divisible by three.
(Short Answer)
4.8/5
(25)
translate the given paragraphs into arguments written in F, using identity and the given translation key. Then, derive their conclusions using the rules of inference for F, including the rules for identity.
-Rey received the highest grade on Test #1. Spencer, who is not Rey, received a grade on Test #1. So, Rey's grade is higher than Spencer's. (r: Rey; s: Spencer; t: Test #1; Gxy: x is a grade on y; Hxy: x is higher than y; Rxy: x received y)
(Essay)
4.9/5
(38)
construct theories for which the following interpretation is a model (i.e. construct at least two sentences which are true under the given interpretation).
Domain = {1, 2, 3, ..., 28, 29, 30}
a = 1 e = 21
b = 2 f = 23
c = 4 g = 27
d = 19 h = 29
Ex = {2, 4, 6, ..., 28, 30}
Ox = {1, 3, 5, ..., 27, 29}
Px = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Sxyz = The set of all triples such that the first is the sum of the second and third
{<2, 1, 1>, <3, 1, 2>, <3, 2, 1>, <4, 1, 3>, <4, 2, 2>, <4, 3, 1>, <5, 1, 4>, ... }
-Construct a theory of at least two sentences which uses at least two constants.
(Essay)
4.9/5
(37)
derive the conclusions of each of the following arguments using the rules of inference for F, including the rules for identity.
-1. (∀x)(Ecx ⊃ x=d)
2. (∀x){(Fx • Gx) ⊃ (∀y)[(Fy • Gy) ⊃ y=x]}
3. (∃x)(Fx • Gx • Ecx)
4. Fa • Ga / a=d
(Essay)
4.7/5
(39)
use:
b: Britain
c: Charles
e: Elizabeth
t: Tescos
Px: x is a person
Qx: x is a Queen of England
Wx: x is a woman
Exy: x is more exalted than y
Ixy: x is in y
Pxy: x shops at y
Sxy: x is a son of y
-Elizabeth has exactly three sons.
(Short Answer)
4.8/5
(35)
translate the given paragraphs into arguments written in F, using identity and the given translation key. Then, derive their conclusions using the rules of inference for F, including the rules for identity.
-The virtue ethicist who teaches Aristotle does not publish on moral theory. Smith is a virtue ethicist who teaches Aristotle. Either one publishes on moral theory or one publishes on applied ethics. So, Smith publishes on applied ethics. (s: Smith; Ax: x publishes on applied ethics; Mx: x publishes on moral theory; Tx: is teaches Aristotle; Vx: x is a virtue ethicist)
(Essay)
4.9/5
(30)
select the best translation into predicate logic, using the following translation key:
b: Britain
c: Charles
e: Elizabeth
t: Tescos
Px: x is a person
Qx: x is a Queen of England
Wx: x is a woman
Exy: x is more exalted than y
Ixy: x is in y
Pxy: x shops at y
Sxy: x is a son of y
-All people in Britain shop at Tescos, except Elizabeth.
(Multiple Choice)
4.9/5
(46)
1. (∀x)(∀y)(∀z)[(Ix • Jx • Iy • Jy • Iz • Jz) ⊃ (x=y y=z x=z)]
2. Ia • Ja • Ka • Ib • Jb • Kb • a≠b
-Which of the following propositions is an immediate (one-step) consequence in F of the given premises?
(Multiple Choice)
4.8/5
(41)
translate the given paragraphs into arguments written in F, using the given translation key. Then, derive their conclusions using the rules of inference for
-All philosophers respect each other. Some philosopher doesn't study some philosopher. Anything which respects something without studying it is open-minded, if ignorant. So something is open-minded and ignorant. (Ix: x is ignorant; Ox: x is open-minded; Px: x is a philosopher; Rxy: x respects y; Sxy: x studies y)
(Essay)
4.8/5
(36)
Translate each sentence into predicate logic, using the given translation keys.
use:
h: Hume
l: Locke
Px: x is a philosopher
Rx: x is a rationalist
Ixy: x influenced y
Sxy: x is more skeptical than y
-All philosophers are more skeptical than some rationalists.
(Essay)
4.8/5
(31)
construct a derivation of each logical truth of identity theory.
-(?x)[Px • (?y)(Qy • y=x)] ? (?x)(Px • Qx)
(Essay)
4.8/5
(34)
Showing 201 - 220 of 300
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)