Exam 4: Building Blocks of Integrated-Circuit Amplifiers

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given the availability of NMOS and PMOS transistors that are matched and have kn=kp=k_{n}=k_{p}= 5 mA/V25 \mathrm{~mA} / \mathrm{V}^{2} and VAn=VAp=5 VV_{A n}=-V_{A p}=5 \mathrm{~V} , give circuits for the following amplifiers. In each case, find the output resistance and the voltage gain. In all cases, operate each transistor at a dc bias current of 100μA100 \mu \mathrm{A} and give the value of VOV\left|V_{O V}\right| at which each transistor is operating. (a) An NMOS common-source amplifier with a PMOS current-source load. (b) An NMOS common-source amplifier with an NMOS cascode stage and a single-transistor PMOS current-source load. (c) An NMOS common-source amplifier with an NMOS cascode stage and a cascode PMOS current-source load.

Free
(Essay)
4.9/5
(42)
Correct Answer:
Verified

For each transistor,
kn=kp=5 mA/V2VAn=VAp=5 VID=100μA\begin{aligned}k_{n} & =k_{p}=5 \mathrm{~mA} / \mathrm{V}^{2} \\V_{A n} & =-V_{A p}=5 \mathrm{~V} \\I_{D} & =100 \mu \mathrm{A}\end{aligned}
ID=12kVOV20.1=12×5×VOV2VOV=0.2 Vgm=2IDVOV=2×0.10.2=1 mA/VrO=VAID=50.1=50kΩ\begin{aligned}I_{D} & =\frac{1}{2} k\left|V_{O V}\right|^{2} \\0.1 & =\frac{1}{2} \times 5 \times\left|V_{O V}\right|^{2} \\\Rightarrow\left|V_{O V}\right| & =0.2 \mathrm{~V} \\g_{m} & =\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.1}{0.2}=1 \mathrm{~mA} / \mathrm{V} \\r_{O} & =\frac{\left|V_{A}\right|}{I_{D}}=\frac{5}{0.1}=50 \mathrm{k} \Omega\end{aligned}
(a)
 For each transistor,  \begin{aligned} k_{n} & =k_{p}=5 \mathrm{~mA} / \mathrm{V}^{2} \\ V_{A n} & =-V_{A p}=5 \mathrm{~V} \\ I_{D} & =100 \mu \mathrm{A} \end{aligned}   \begin{aligned} I_{D} & =\frac{1}{2} k\left|V_{O V}\right|^{2} \\ 0.1  & =\frac{1}{2} \times 5 \times\left|V_{O V}\right|^{2} \\ \Rightarrow\left|V_{O V}\right| & =0.2 \mathrm{~V} \\ g_{m} & =\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.1}{0.2}=1 \mathrm{~mA} / \mathrm{V} \\ r_{O} & =\frac{\left|V_{A}\right|}{I_{D}}=\frac{5}{0.1}=50 \mathrm{k} \Omega \end{aligned}  (a)     Figure 8.2.1 See Figure 8.2.1.  \begin{aligned} & R_{o}=r_{o n}\left\|r_{o p}=50\right\| 50=25 \mathrm{k} \Omega \\ & A_{V}=-g_{m} R_{O}=-1 \times 25=-25 \mathrm{~V} / \mathrm{V} \end{aligned}  (b)      Figure 8.2.2  \begin{aligned} R_{O 2} & \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} \\ & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O 3} & =r_{o 3}=50 \mathrm{k} \Omega \\ R_{O} & =R_{O 2}\left\|R_{O 3}=50\right\| 2500=49 \mathrm{k} \Omega \\ A_{v} & =-g_{m 1} R_{O}=-1 \times 49=-49 \mathrm{~V} / \mathrm{V} \end{aligned}  (c)      Figure 8.2.3  \begin{aligned} R_{o 2} \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O 3} \simeq\left(g_{m 3} r_{o 3}\right) r_{o 4} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O}=R_{O 2} \| R_{O 3} & =2500 \| 2500=1250 \mathrm{k} \Omega \\ A_{v}=-g_{m 1} R_{O} & =-1 \times 1250=-1250 \mathrm{~V} / \mathrm{V} \end{aligned}
Figure 8.2.1
See Figure 8.2.1.
Ro=ronrop=5050=25kΩAV=gmRO=1×25=25 V/V\begin{aligned}& R_{o}=r_{o n}\left\|r_{o p}=50\right\| 50=25 \mathrm{k} \Omega \\& A_{V}=-g_{m} R_{O}=-1 \times 25=-25 \mathrm{~V} / \mathrm{V}\end{aligned}
(b)
 For each transistor,  \begin{aligned} k_{n} & =k_{p}=5 \mathrm{~mA} / \mathrm{V}^{2} \\ V_{A n} & =-V_{A p}=5 \mathrm{~V} \\ I_{D} & =100 \mu \mathrm{A} \end{aligned}   \begin{aligned} I_{D} & =\frac{1}{2} k\left|V_{O V}\right|^{2} \\ 0.1  & =\frac{1}{2} \times 5 \times\left|V_{O V}\right|^{2} \\ \Rightarrow\left|V_{O V}\right| & =0.2 \mathrm{~V} \\ g_{m} & =\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.1}{0.2}=1 \mathrm{~mA} / \mathrm{V} \\ r_{O} & =\frac{\left|V_{A}\right|}{I_{D}}=\frac{5}{0.1}=50 \mathrm{k} \Omega \end{aligned}  (a)     Figure 8.2.1 See Figure 8.2.1.  \begin{aligned} & R_{o}=r_{o n}\left\|r_{o p}=50\right\| 50=25 \mathrm{k} \Omega \\ & A_{V}=-g_{m} R_{O}=-1 \times 25=-25 \mathrm{~V} / \mathrm{V} \end{aligned}  (b)      Figure 8.2.2  \begin{aligned} R_{O 2} & \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} \\ & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O 3} & =r_{o 3}=50 \mathrm{k} \Omega \\ R_{O} & =R_{O 2}\left\|R_{O 3}=50\right\| 2500=49 \mathrm{k} \Omega \\ A_{v} & =-g_{m 1} R_{O}=-1 \times 49=-49 \mathrm{~V} / \mathrm{V} \end{aligned}  (c)      Figure 8.2.3  \begin{aligned} R_{o 2} \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O 3} \simeq\left(g_{m 3} r_{o 3}\right) r_{o 4} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O}=R_{O 2} \| R_{O 3} & =2500 \| 2500=1250 \mathrm{k} \Omega \\ A_{v}=-g_{m 1} R_{O} & =-1 \times 1250=-1250 \mathrm{~V} / \mathrm{V} \end{aligned}

Figure 8.2.2
RO2(gm2ro2)ro1=(1×50)×50=2500kΩRO3=ro3=50kΩRO=RO2RO3=502500=49kΩAv=gm1RO=1×49=49 V/V\begin{aligned}R_{O 2} & \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} \\& =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\R_{O 3} & =r_{o 3}=50 \mathrm{k} \Omega \\R_{O} & =R_{O 2}\left\|R_{O 3}=50\right\| 2500=49 \mathrm{k} \Omega \\A_{v} & =-g_{m 1} R_{O}=-1 \times 49=-49 \mathrm{~V} / \mathrm{V}\end{aligned}
(c)
 For each transistor,  \begin{aligned} k_{n} & =k_{p}=5 \mathrm{~mA} / \mathrm{V}^{2} \\ V_{A n} & =-V_{A p}=5 \mathrm{~V} \\ I_{D} & =100 \mu \mathrm{A} \end{aligned}   \begin{aligned} I_{D} & =\frac{1}{2} k\left|V_{O V}\right|^{2} \\ 0.1  & =\frac{1}{2} \times 5 \times\left|V_{O V}\right|^{2} \\ \Rightarrow\left|V_{O V}\right| & =0.2 \mathrm{~V} \\ g_{m} & =\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.1}{0.2}=1 \mathrm{~mA} / \mathrm{V} \\ r_{O} & =\frac{\left|V_{A}\right|}{I_{D}}=\frac{5}{0.1}=50 \mathrm{k} \Omega \end{aligned}  (a)     Figure 8.2.1 See Figure 8.2.1.  \begin{aligned} & R_{o}=r_{o n}\left\|r_{o p}=50\right\| 50=25 \mathrm{k} \Omega \\ & A_{V}=-g_{m} R_{O}=-1 \times 25=-25 \mathrm{~V} / \mathrm{V} \end{aligned}  (b)      Figure 8.2.2  \begin{aligned} R_{O 2} & \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} \\ & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O 3} & =r_{o 3}=50 \mathrm{k} \Omega \\ R_{O} & =R_{O 2}\left\|R_{O 3}=50\right\| 2500=49 \mathrm{k} \Omega \\ A_{v} & =-g_{m 1} R_{O}=-1 \times 49=-49 \mathrm{~V} / \mathrm{V} \end{aligned}  (c)      Figure 8.2.3  \begin{aligned} R_{o 2} \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O 3} \simeq\left(g_{m 3} r_{o 3}\right) r_{o 4} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\ R_{O}=R_{O 2} \| R_{O 3} & =2500 \| 2500=1250 \mathrm{k} \Omega \\ A_{v}=-g_{m 1} R_{O} & =-1 \times 1250=-1250 \mathrm{~V} / \mathrm{V} \end{aligned}

Figure 8.2.3
Ro2(gm2ro2)ro1=(1×50)×50=2500kΩRO3(gm3ro3)ro4=(1×50)×50=2500kΩRO=RO2RO3=25002500=1250kΩAv=gm1RO=1×1250=1250 V/V\begin{aligned}R_{o 2} \simeq\left(g_{m 2} r_{o 2}\right) r_{o 1} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\R_{O 3} \simeq\left(g_{m 3} r_{o 3}\right) r_{o 4} & =(1 \times 50) \times 50=2500 \mathrm{k} \Omega \\R_{O}=R_{O 2} \| R_{O 3} & =2500 \| 2500=1250 \mathrm{k} \Omega \\A_{v}=-g_{m 1} R_{O} & =-1 \times 1250=-1250 \mathrm{~V} / \mathrm{V}\end{aligned}

     Figure 8.4.1 The cascode current source in Fig. 8.4.1 utilizes two identical PMOS transistors fabricated in a 0.18 -  \mu \mathrm{m}  CMOS process for which  V_{D D}=1.8 \mathrm{~V} ,  V_{t p}=-0.5 \mathrm{~V}, V_{A}^{\prime}=-6 \mathrm{~V} / \mu \mathrm{m} , and  \mu_{p} C_{o x}=   100 \mu \mathrm{A} / \mathrm{V}^{2} . Design the circuit to obtain  I=50 \mu \mathrm{A}  and  R_{O}=1 \mathrm{M} \Omega  and to allow for the maximum possible voltage swing at the output terminal of the current source. Utilize  \left|V_{O V}\right|=0.2 \mathrm{~V} . Specify the values of  L  and  W / L  for  Q_{1}  and  Q_{2} . As well, specify the required values of the dc bias voltages  V_{G 1}  and  V_{G 2} . What is the maximum allowable voltage at the output? Figure 8.4.1 The cascode current source in Fig. 8.4.1 utilizes two identical PMOS transistors fabricated in a 0.18 - μm\mu \mathrm{m} CMOS process for which VDD=1.8 VV_{D D}=1.8 \mathrm{~V} , Vtp=0.5 V,VA=6 V/μmV_{t p}=-0.5 \mathrm{~V}, V_{A}^{\prime}=-6 \mathrm{~V} / \mu \mathrm{m} , and μpCox=\mu_{p} C_{o x}= 100μA/V2100 \mu \mathrm{A} / \mathrm{V}^{2} . Design the circuit to obtain I=50μAI=50 \mu \mathrm{A} and RO=1MΩR_{O}=1 \mathrm{M} \Omega and to allow for the maximum possible voltage swing at the output terminal of the current source. Utilize VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} . Specify the values of LL and W/LW / L for Q1Q_{1} and Q2Q_{2} . As well, specify the required values of the dc bias voltages VG1V_{G 1} and VG2V_{G 2} . What is the maximum allowable voltage at the output?

Free
(Essay)
4.9/5
(35)
Correct Answer:
Verified

    Figure 8.4.2  \begin{aligned} V_{S G} & =\left|V_{t p}\right|+\left|V_{O V}\right| \\ & =0.5+0.2=0.7 \mathrm{~V} \end{aligned}  Minimum required voltage  V_{S D}=\left|V_{O V}\right|=0.2 \mathrm{~V} . From Fig. 8.4.2, we see that  \begin{aligned} V_{G 1} & =+0.9 \mathrm{~V} \\ V_{G 2} & =+1.1 \mathrm{~V} \\ v_{O \max } & =+0.9+0.5=1.4 \mathrm{~V} \\ I_{D} & =\frac{1}{2}\left(\mu_{p} C_{o x}\right)\left(\frac{W}{L}\right)\left|V_{O V}\right|^{2} \\ 50 & =\frac{1}{2} \times 100 \times \frac{W}{L} \times 0.2^{2} \\ \Rightarrow \frac{W}{L} & =25 \\ R_{o} & =R_{o 1}=\left(g_{m 1} r_{o 1}\right) r_{o 2} \end{aligned}  where  \begin{aligned} g_{m 1} & =\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.05}{0.2}=0.5 \mathrm{~mA} / \mathrm{V} \\ r_{o 1} & =r_{o 2}=\frac{\left|V_{A}\right|}{I_{D}}=\frac{\left|V_{A}^{\prime}\right| L}{I_{D}} \end{aligned}  For  R_{O}=1 \mathrm{M} \Omega ,  \begin{aligned} 1000 & =0.5 r_{o}^{2} \\ \Rightarrow r_{o} & =44.72 \mathrm{k} \Omega \\ 44.72  & =\frac{6 L}{0.05} \\ \Rightarrow L & =0.37 \mu \mathrm{m} \end{aligned}
Figure 8.4.2
VSG=Vtp+VOV=0.5+0.2=0.7 V\begin{aligned}V_{S G} & =\left|V_{t p}\right|+\left|V_{O V}\right| \\& =0.5+0.2=0.7 \mathrm{~V}\end{aligned}
Minimum required voltage VSD=VOV=0.2 VV_{S D}=\left|V_{O V}\right|=0.2 \mathrm{~V} .
From Fig. 8.4.2, we see that
VG1=+0.9 VVG2=+1.1 VvOmax=+0.9+0.5=1.4 VID=12(μpCox)(WL)VOV250=12×100×WL×0.22WL=25Ro=Ro1=(gm1ro1)ro2\begin{aligned}V_{G 1} & =+0.9 \mathrm{~V} \\V_{G 2} & =+1.1 \mathrm{~V} \\v_{O \max } & =+0.9+0.5=1.4 \mathrm{~V} \\I_{D} & =\frac{1}{2}\left(\mu_{p} C_{o x}\right)\left(\frac{W}{L}\right)\left|V_{O V}\right|^{2} \\50 & =\frac{1}{2} \times 100 \times \frac{W}{L} \times 0.2^{2} \\\Rightarrow \frac{W}{L} & =25 \\R_{o} & =R_{o 1}=\left(g_{m 1} r_{o 1}\right) r_{o 2}\end{aligned}
where
gm1=2IDVOV=2×0.050.2=0.5 mA/Vro1=ro2=VAID=VALID\begin{aligned}g_{m 1} & =\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.05}{0.2}=0.5 \mathrm{~mA} / \mathrm{V} \\r_{o 1} & =r_{o 2}=\frac{\left|V_{A}\right|}{I_{D}}=\frac{\left|V_{A}^{\prime}\right| L}{I_{D}}\end{aligned}
For RO=1MΩR_{O}=1 \mathrm{M} \Omega ,
1000=0.5ro2ro=44.72kΩ44.72=6L0.05L=0.37μm\begin{aligned}1000 & =0.5 r_{o}^{2} \\\Rightarrow r_{o} & =44.72 \mathrm{k} \Omega \\44.72 & =\frac{6 L}{0.05} \\\Rightarrow L & =0.37 \mu \mathrm{m}\end{aligned}

     Figure 8.1.1 For the circuit shown in Fig. 8.1.1, assume  Q_{1}  and  Q_{2}  are perfectly matched, and  Q_{3}, Q_{4} , and  Q_{5}  are perfectly matched. Also, assume all transistors have very high  \beta  and  V_{A} . Find  V_{1}, I , and  V_{2} . Figure 8.1.1 For the circuit shown in Fig. 8.1.1, assume Q1Q_{1} and Q2Q_{2} are perfectly matched, and Q3,Q4Q_{3}, Q_{4} , and Q5Q_{5} are perfectly matched. Also, assume all transistors have very high β\beta and VAV_{A} . Find V1,IV_{1}, I , and V2V_{2} .

Free
(Essay)
4.8/5
(33)
Correct Answer:
Verified

    Figure 8.1.2 The analysis is shown on Fig. 8.1.2.

Figure 8.1.2
The analysis is shown on Fig. 8.1.2.

     Figure 8.3.1 Design the double-cascode current source shown in Fig. 8.3.1 to provide  I=0.2 \mathrm{~mA}  and the largest possible signal swing at the output; that is, design for the minimum allowable voltage across each transistor. The CMOS fabrication process available has  \left|V_{t p}\right|=0.4 \mathrm{~V},\left|V_{A}^{\prime}\right|=6 \mathrm{~V} / \mu \mathrm{m} , and  \mu_{p} C_{o x}=100 \mu \mathrm{A} / \mathrm{V}^{2} . Use devices with  L=   0.4 \mu \mathrm{m} , and operate at  \left|V_{O V}\right|=0.2 \mathrm{~V} . (a) Specify  V_{G 1}, V_{G 2} , and  V_{G 3} . (b) Find the  W / L  ratios of the transistors. (c) What is the value of  R_{O}  achieved? (d) What is the maximum allowable voltage at the current-source output? (e) If this current source is used as the load of an NMOS double-cascode amplifier having a shortcircuit transconductance of  2 \mathrm{~mA} / \mathrm{V}  and an output resistance equal to  R_{O}  of the current source, what voltage gain is obtained? Figure 8.3.1 Design the double-cascode current source shown in Fig. 8.3.1 to provide I=0.2 mAI=0.2 \mathrm{~mA} and the largest possible signal swing at the output; that is, design for the minimum allowable voltage across each transistor. The CMOS fabrication process available has Vtp=0.4 V,VA=6 V/μm\left|V_{t p}\right|=0.4 \mathrm{~V},\left|V_{A}^{\prime}\right|=6 \mathrm{~V} / \mu \mathrm{m} , and μpCox=100μA/V2\mu_{p} C_{o x}=100 \mu \mathrm{A} / \mathrm{V}^{2} . Use devices with L=L= 0.4μm0.4 \mu \mathrm{m} , and operate at VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} . (a) Specify VG1,VG2V_{G 1}, V_{G 2} , and VG3V_{G 3} . (b) Find the W/LW / L ratios of the transistors. (c) What is the value of ROR_{O} achieved? (d) What is the maximum allowable voltage at the current-source output? (e) If this current source is used as the load of an NMOS double-cascode amplifier having a shortcircuit transconductance of 2 mA/V2 \mathrm{~mA} / \mathrm{V} and an output resistance equal to ROR_{O} of the current source, what voltage gain is obtained?

(Essay)
4.8/5
(37)

     Figure 8.5.1 The modified Wilson current mirror of Fig. 8.5.1 utilizes four matched transistors for which  V_{t}=   0.4 \mathrm{~V}, \mu_{n} C_{o x}=400 \mu \mathrm{A} / \mathrm{V}^{2} , and  V_{A}=3 \mathrm{~V} . It is required to design the circuit so that  I_{O}=0.2 \mathrm{~mA}  with all transistors operating at  V_{O V}=0.2 \mathrm{~V} . (a) Find the required value of  R . (b) Find the required value of the  W / L  ratio for each of the four transistors. (c) Find the value of the output resistance  R_{O} . (d) What is the minimum voltage permitted at the output? Figure 8.5.1 The modified Wilson current mirror of Fig. 8.5.1 utilizes four matched transistors for which Vt=V_{t}= 0.4 V,μnCox=400μA/V20.4 \mathrm{~V}, \mu_{n} C_{o x}=400 \mu \mathrm{A} / \mathrm{V}^{2} , and VA=3 VV_{A}=3 \mathrm{~V} . It is required to design the circuit so that IO=0.2 mAI_{O}=0.2 \mathrm{~mA} with all transistors operating at VOV=0.2 VV_{O V}=0.2 \mathrm{~V} . (a) Find the required value of RR . (b) Find the required value of the W/LW / L ratio for each of the four transistors. (c) Find the value of the output resistance ROR_{O} . (d) What is the minimum voltage permitted at the output?

(Essay)
4.8/5
(41)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)