Exam 13: Appendices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=12;P(x)=8x3+16x28x\mathrm{k}=\frac{1}{2} ; \mathrm{P}(\mathrm{x})=-8 \mathrm{x}^{3}+16 \mathrm{x}^{2}-8 \mathrm{x}

(Multiple Choice)
4.9/5
(37)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=3;P(x)=x23x5k=3 ; P(x)=x^{2}-3 x-5

(Multiple Choice)
4.9/5
(39)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=42i;P(x)=x22x+4\mathrm{k}=4-2 \mathrm{i} ; \mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+4

(Multiple Choice)
4.9/5
(27)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=3;P(x)=x3+2x22\mathrm{k}=-3 ; \mathrm{P}(\mathrm{x})=-\mathrm{x}^{3}+2 \mathrm{x}^{2}-2

(Multiple Choice)
4.9/5
(38)

Use synthetic division to find the quotient. - (x4+256)÷(x4)\left(x^{4}+256\right) \div(x-4)

(Multiple Choice)
4.9/5
(40)

Use synthetic division to decide whether the given number is a solution of the given equation. - 7x3+x2+3x1;x=2-7 x^{3}+x^{2}+3 x-1 ; x=2

(True/False)
4.7/5
(32)

Use the remainder theorem to find P(k)\mathbf{P}(\mathbf{k}) . - k=2;P(x)=x6+2x5+2x4+3x33x24x6k=-2 ; P(x)=x^{6}+2 x^{5}+2 x^{4}+3 x^{3}-3 x^{2}-4 x-6

(Multiple Choice)
4.8/5
(36)

Use synthetic division to decide whether the given number is a solution of the given equation. - x3+7x216x+18;x=2+ix^{3}+7 x^{2}-16 x+18 ; x=2+i

(True/False)
4.9/5
(41)

Use synthetic division to find the quotient. - (6x3+2x2+5x10)÷(x2)\left(-6 x^{3}+2 x^{2}+5 x-10\right) \div(x-2)

(Multiple Choice)
4.9/5
(41)
Showing 21 - 29 of 29
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)