Exam 7: Symmetrical Components

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A balanced Y-connected generator with terminal voltage Vbc=48090V_{b c}=480 \angle 90^{\circ} volts is connected to a balanced- Δ\Delta load whose impedance is 204020 \angle 40^{\circ} ohms per phase. The line impedance between the source and load is 0.5800.5 \angle 80^{\circ} ohm for each phase. The generator neutral is grounded through an impedance of j5ohmsj 5 \mathrm{ohms} . The generator sequence impedances are given by Zg0=j7,Zg1=j15Z_{g 0}=j 7, Z_{g 1}=j 15 , and Zg2=j10ohmsZ_{g 2}=j 10 \mathrm{ohms} . Draw the sequence networks for this system and determine the sequence components of the line currents.

Free
(Essay)
4.9/5
(42)
Correct Answer:
Verified

     \begin{aligned} \bar{I}_{\text {Line } 0} & =\bar{I}_{\text {Line } 2}=0 \\ \bar{I}_{\text {Line } 1} & =\frac{V_{g 1}}{\bar{Ƶ}_{\text {Line } 1}+\frac{\bar{Ƶ}_{\Delta}}{3}}=\frac{\frac{480}{\sqrt{3}} \angle 180^{\circ}}{0.5 \angle 80^{\circ}+\frac{20}{3} \angle 40^{\circ}} \\ & =\frac{277.14 \angle 180^{\circ}}{5.194+j 4.778}=\frac{277.14 \angle 180^{\circ}}{7.057 \angle 42.61^{\circ}}=39.27 \angle 137.4^{\circ} \mathrm{A} \end{aligned}
IˉLine 0=IˉLine 2=0IˉLine 1=Vg1ƵˉLine 1+ƵˉΔ3=48031800.580+20340=277.141805.194+j4.778=277.141807.05742.61=39.27137.4A\begin{aligned}\bar{I}_{\text {Line } 0} & =\bar{I}_{\text {Line } 2}=0 \\\bar{I}_{\text {Line } 1} & =\frac{V_{g 1}}{\bar{Ƶ}_{\text {Line } 1}+\frac{\bar{Ƶ}_{\Delta}}{3}}=\frac{\frac{480}{\sqrt{3}} \angle 180^{\circ}}{0.5 \angle 80^{\circ}+\frac{20}{3} \angle 40^{\circ}} \\& =\frac{277.14 \angle 180^{\circ}}{5.194+j 4.778}=\frac{277.14 \angle 180^{\circ}}{7.057 \angle 42.61^{\circ}}=39.27 \angle 137.4^{\circ} \mathrm{A}\end{aligned}

Find the phase voltages Van,VbnV_{a n}, V_{b n} , and VcnV_{c n} whose sequence components are: V0=2080,V1=1000,V2=30180VV_{0}=20 \angle 80^{\circ}, V_{1}=100 \angle 0^{\circ}, V_{2}=30 \angle 180^{\circ} \mathrm{V} .

Free
(Essay)
4.9/5
(33)
Correct Answer:
Verified

[VˉanVˉbnVˉcn]=[1111a2a1aa2][2080100030180]=[2080+1000+301802080+100290+303002080+100120+3060]=[73.47+j19.7031.53j92.8931.53+j132.3]=[76.0715.0198.09251.3135.98103.4]V\begin{aligned}{\left[\begin{array}{l}\bar{V}_{a n} \\\bar{V}_{b n} \\\bar{V}_{c n}\end{array}\right] } & =\left[\begin{array}{ccc}1 & 1 & 1 \\1 & a^{2} & a \\1 & a & a^{2}\end{array}\right]\left[\begin{array}{c}20 \angle 80^{\circ} \\100 \angle 0^{\circ} \\30 \angle 180^{\circ}\end{array}\right]=\left[\begin{array}{c}20 \angle 80^{\circ}+100 \angle 0^{\circ}+30 \angle 180^{\circ} \\20 \angle 80^{\circ}+100 \angle 290^{\circ}+30 \angle 300^{\circ} \\20 \angle 80^{\circ}+100 \angle 120^{\circ}+30 \angle 60^{\circ}\end{array}\right] \\& =\left[\begin{array}{c}73.47+j 19.70 \\-31.53-j 92.89 \\-31.53+j 132.3\end{array}\right]=\left[\begin{array}{c}76.07 \angle 15.01^{\circ} \\98.09 \angle 251.3^{\circ} \\135.98 \angle 103.4^{\circ}\end{array}\right] \mathrm{V}\end{aligned}

Given that the line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (12+j16)(12+j 16) ohms per phase. The load neutral is kept open. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .

Free
(Essay)
4.8/5
(38)
Correct Answer:
Verified

     \bar{I}_{0}=0  From Test Bank Problem 8.5,  \bar{I}_{1}=27.57 \angle-59.76^{\circ} \mathrm{A} ; \bar{I}_{2}=2.487 \angle 26.3^{\circ} \mathrm{A}   \begin{aligned} {\left[\begin{array}{c} \bar{I}_{a} \\ \bar{I}_{b} \\ \bar{I}_{c} \end{array}\right] } & =\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{array}\right]\left[\begin{array}{c} 0 \\ 27.57 \angle-59.76^{\circ} \\ 2.487 \angle 26.3^{\circ} \end{array}\right] \\ & =\left[\begin{array}{c} 27.57 \angle-59.76^{\circ}+2.487 \angle 26.3^{\circ} \\ 27.57 \angle 180.24^{\circ}+2.487 \angle 146.3^{\circ} \\ 27.57 \angle 60.24^{\circ}+2.487 \angle 266.3^{\circ} \end{array}\right] \\ & =\left[\begin{array}{c} 16.120-j 22.72 \\ -29.64+j 1.2650 \\ 13.530+j 21.46 \end{array}\right]=\left[\begin{array}{l} 27.86 \angle-54.64^{\circ} \\ 29.66 \angle 177.56^{\circ} \\ 25.36 \angle 57.77^{\circ} \end{array}\right] \mathrm{A} \end{aligned}
Iˉ0=0\bar{I}_{0}=0
From Test Bank Problem 8.5, Iˉ1=27.5759.76A;Iˉ2=2.48726.3A\bar{I}_{1}=27.57 \angle-59.76^{\circ} \mathrm{A} ; \bar{I}_{2}=2.487 \angle 26.3^{\circ} \mathrm{A}
[IˉaIˉbIˉc]=[1111a2a1aa2][027.5759.762.48726.3]=[27.5759.76+2.48726.327.57180.24+2.487146.327.5760.24+2.487266.3]=[16.120j22.7229.64+j1.265013.530+j21.46]=[27.8654.6429.66177.5625.3657.77]A\begin{aligned}{\left[\begin{array}{c}\bar{I}_{a} \\\bar{I}_{b} \\\bar{I}_{c}\end{array}\right] } & =\left[\begin{array}{ccc}1 & 1 & 1 \\1 & a^{2} & a \\1 & a & a^{2}\end{array}\right]\left[\begin{array}{c}0 \\27.57 \angle-59.76^{\circ} \\2.487 \angle 26.3^{\circ}\end{array}\right] \\& =\left[\begin{array}{c}27.57 \angle-59.76^{\circ}+2.487 \angle 26.3^{\circ} \\27.57 \angle 180.24^{\circ}+2.487 \angle 146.3^{\circ} \\27.57 \angle 60.24^{\circ}+2.487 \angle 266.3^{\circ}\end{array}\right] \\& =\left[\begin{array}{c}16.120-j 22.72 \\-29.64+j 1.2650 \\13.530+j 21.46\end{array}\right]=\left[\begin{array}{l}27.86 \angle-54.64^{\circ} \\29.66 \angle 177.56^{\circ} \\25.36 \angle 57.77^{\circ}\end{array}\right] \mathrm{A}\end{aligned}

Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced- Δ\Delta load consisting of (12+j16)(12+j 16) ohms per phase. The load neutral is solidly grounded. Draw the sequence networks and calculate I0I_{0} , I1I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .

(Essay)
4.9/5
(33)

Given the line-to-ground voltages Vag=2800,Vbg=290130V_{a g}=280 \angle 0^{\circ}, V_{b g}=290 \angle-130^{\circ} , and Vcg=260110V_{c g}=260 \angle 110^{\circ} volts, calculate (a) the sequence components of the line-to-ground voltages, denoted VLg0,VLg1V_{\mathrm{L} g 0}, V_{\mathrm{L} g 1} , and VLg2V_{\mathrm{L} g 2} ; (b) line-to-line voltages Vab,VbcV_{a b}, V_{b c} , and VcaV_{c a} ; and (c) sequence components of the line-to-line voltages VLL0,VLL1V_{\mathrm{LL} 0}, V_{\mathrm{LL} 1} , and VLL2V_{\mathrm{LL} 2} . Also, verify the following general relation: VLL0=0,VLL1=3VLg1+30V_{\mathrm{LL} 0}=0, V_{\mathrm{LL} 1}=\sqrt{3} V_{\mathrm{L} g 1} \angle+30^{\circ} , and VLL2=3VLg230V_{\mathrm{LL} 2}=\sqrt{3} V_{\mathrm{L} g 2} \angle-30^{\circ} volts.

(Essay)
4.8/5
(36)

The currents in a Δ\Delta load are Iab=100,Ibc=2090I_{a b}=10 \angle 0^{\circ}, I_{b c}=20 \angle-90^{\circ} , and Ica=1590I_{c a}=15 \angle 90^{\circ} A. Calculate (a) the sequence components of the Δ\Delta -load currents, denoted IΔ0,IΔ1,IΔ2I_{\Delta 0}, I_{\Delta 1}, I_{\Delta 2} ; (b) the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} , which feed the Δ\Delta load; and (c) sequence components of the line currents IL0,IL1I_{\mathrm{L} 0}, I_{\mathrm{L} 1} , and IL2I_{\mathrm{L} 2} . Also, verify the following general relation: IL0=0I_{\mathrm{L} 0}=0 , IL1=3IΔ130I_{\mathrm{L} 1}=\sqrt{3} I_{\Delta 1} \angle-30^{\circ} , and IL2=3IΔ2+30AI_{\mathrm{L} 2}=\sqrt{3} I_{\Delta 2} \angle+30^{\circ} \mathrm{A} .

(Essay)
4.8/5
(41)

In a three-phase system, a synchronous generator supplies power to a 208-volt synchronous motor through a line having an impedance of 0.5800.5 \angle 80^{\circ} ohm per phase. The motor draws 10 kW10 \mathrm{~kW} at 0.8 p.f. leading and at rated voltage. The neutrals of both the generator and motor are grounded through impedances of j5ohmsj 5 \mathrm{ohms} . The sequence impedances of both machines are Z0=j5,Z1=j15Z_{0}=j 5, Z_{1}=j 15 , and Z2=j10Z_{2}=j 10 ohms. Draw the sequence networks for this system and find the line-to-line voltage at the generator terminals. Assume balanced three-phase operation.

(Essay)
4.9/5
(37)

Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (3+j4)(3+j 4) ohms per phase between the source and the load. The load neutral is solidly grounded. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .

(Essay)
4.7/5
(26)

One line of a three-phase generator is open circuited, while the other two are short-circuited to ground. The line currents are Ia=0,Ib=1500/90I_{a}=0, I_{b}=1500 / 90^{\circ} , and Ic=I_{c}= 1500301500 \angle-30^{\circ} A. Find the symmetrical components of these currents. Also find the current into the ground.

(Essay)
4.8/5
(29)

Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (3+j4)(3+j 4) ohms per phase between the source and the load. The load neutral is solidly grounded. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} . Also calculate the real and reactive power delivered to the three-phase load.

(Essay)
4.9/5
(41)

Determine the symmetrical components of the following line currents: (a) Ia=1090I_{a}=10 \angle 90^{\circ} , Ib=10340,Ic=10200AI_{b}=10 \angle 340^{\circ}, I_{c}=10 \angle 200^{\circ} \mathrm{A} ; (b) Ia=100,Ib=j100,Ic=0 AI_{a}=100, I_{b}=j 100, I_{c}=0 \mathrm{~A} .

(Essay)
4.9/5
(27)

Using the operator a=1120a=1 \angle 120^{\circ} , evaluate the following in polar form: (a) (a+1)/(a+1) / (1+aa2)\left(1+a-a^{2}\right) , (b) (a2+a+j)/(jaa2),(\left(a^{2}+a+j\right) /\left(j a-a^{2}\right),\left(\right. c) (1a)(1+a2)(1-a)\left(1+a^{2}\right) , (d) (a+a2)(a2+1)\left(a+a^{2}\right)\left(a^{2}+1\right) .

(Essay)
4.8/5
(31)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)