Exam 11: First-Order Differential Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Verify that the function y=f(x)y=f(x) is a solution of the differential equation xdxdyy=x5x \frac{d x}{d y}-y=x^{5} . f(x)=14(x5+15x)f(x)=\frac{1}{4}\left(x^{5}+15 x\right)

Free
(Essay)
4.8/5
(27)
Correct Answer:
Verified

x4(5x4+15)14(x5+15x)=x5\frac{x}{4}\left(5 x^{4}+15\right)-\frac{1}{4}\left(x^{5}+15 x\right)=x^{5}

For the problems below, solve each differential equation. -11 ydxx2+y2+xdyx2+y2+y2dy\frac{y d x}{x^{2}+y^{2}}+\frac{x d y}{x^{2}+y^{2}}+y^{2} d y

Free
(Essay)
4.7/5
(37)
Correct Answer:
Verified

Arctanxy=13y3+C\operatorname{Arctan} \frac{x}{y}=\frac{1}{3} y^{3}+C

Find the general solution of the linear differential equation y+3y=e3xy^{\prime}+3 y=e^{-3 x} .

Free
(Multiple Choice)
4.9/5
(29)
Correct Answer:
Verified

A

For the problems below, solve each differential equation. -12 xdy+ydx4x3=dx\frac{x d y+y d x}{4 x^{3}}=d x

(Essay)
4.9/5
(34)

For the problems below, solve each differential equation. - dxdy+6xy=e3x2sinx\frac{d x}{d y}+6 x y=e^{-3 x^{2}} \sin x

(Essay)
4.9/5
(29)

Find the equation for the current i\mathrm{i} in a series circuit with inductance L=0.2H\mathrm{L}=0.2 \mathrm{H} , resistance R=120Ω\mathrm{R}=120 \Omega , and voltage V=210\mathrm{V}=210 volts if the initial current i0=5\mathrm{i}_{0}=5 amperes when t=0\mathrm{t}=0 . (Hint: Use Ldidt+Ri=V\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{Ri}=\mathrm{V} .)

(Short Answer)
4.8/5
(29)

Find the particular solution of the differential equation xdyydxx2=2ydy\frac{x d y-y d x}{x^{2}}=2 y d y where y=6\mathrm{y}=6 when x=2\mathrm{x}=2 .

(Short Answer)
4.8/5
(41)

Find the particular solution of the differential equation x2dy=ydxx^{2} d y=y d x if y=1y=1 when x=1x=1 .

(Multiple Choice)
4.8/5
(35)

A radioactive material with an original mass of 10 g10 \mathrm{~g} has a mass of 8 g8 \mathrm{~g} after 50 years. The material decays at a rate proportional to the amount present. Find an expression for the amount present at any time t. Also find its half-life.

(Multiple Choice)
4.8/5
(36)

State the onder and degree of the differential equation y+y5=2x3y^{\prime \prime}+y^{5}=2 x^{3} .

(Multiple Choice)
4.7/5
(35)

An object at 450F450^{\circ} \mathrm{F} is cooled in air, which is at 75F75^{\circ} \mathrm{F} . If the object is 420F420^{\circ} \mathrm{F} after 6 min6 \mathrm{~min} , find the temperature of the object after 45 min45 \mathrm{~min} .

(Short Answer)
4.8/5
(32)

Find the particular solution of the differential equation yyx=x2y^{\prime}-\frac{y}{x}=x^{2} if y=4y=4 when x=1x=1 .

(Multiple Choice)
4.8/5
(31)

Find the particular solution to the differential equation dxdy=y2x3\frac{d x}{d y}=\frac{y^{2}}{x^{3}} where y=8y=8 when x=4x=4 .

(Essay)
5.0/5
(33)

Radioactive material decays at a rate proportional to the amount present. For a certain radioactive substance, approximately 16%16 \% of the original quantity decomposes in 24 years. Find the half- life of this radioactive material.

(Short Answer)
4.9/5
(28)

Solve the differential equation: x(y1)dx+(x2+3)dy=0x(y-1) d x+\left(x^{2}+3\right) d y=0

(Essay)
4.8/5
(34)

For the problems below, solve each differential equation. - 4ydx+xdy=5x2dx4 y d x+x d y=5 x^{2} d x

(Short Answer)
4.8/5
(31)

State the order and degree of the differential equation ( y)22xy+5y=0\left.y^{\prime \prime \prime}\right) 2-2 x y^{\prime}+5 y^{\prime \prime}=0 .

(Short Answer)
4.7/5
(37)

Find the equation for the current ii in a series circuit with inductance L=0.1HL=0.1 \mathrm{H} , resistance R=8R=8 ohms, and voltage V=12\mathrm{V}=12 volts. The initial current i0=2\mathrm{i} 0=2 amperes when t=0\mathrm{t}=0 .

(Multiple Choice)
4.9/5
(34)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)