Exam 6: Multiple Linear Regression Analysis

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Multiple linear regression analysis determines the

Free
(Multiple Choice)
4.9/5
(30)
Correct Answer:
Verified

C

The "holding all other independent variables constant" condition is important

Free
(Multiple Choice)
4.8/5
(41)
Correct Answer:
Verified

A

How do you perform a test of the overall significance of the regression function? What are the null and alternative hypothesis for this test? What is the rejection rule? What is the intuition for why the test works? Explain.

Free
(Essay)
4.8/5
(35)
Correct Answer:
Verified

You perform a test of the overall significance of the regression function by comparing the p-value for the overall regression (the significance F)to the chosen significance level.The null and alternative hypothesis for the test are

H0:β0=β1=β2==βk=0H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = \ldots = \beta _ { k } = 0 HA:H _ { A } : at least one of β0,β1,β2,,βk0\beta _ { 0 } , \beta _ { 1 } , \beta _ { 2 } , \ldots , \beta _ { k } \neq 0



The rejection rule for the 5 percent significance level is:
 Reject H0 if <i>significance </i> F<.05\text { Reject } H _ { 0 } \text { if <i>significance </i> } F < .05 This test works for the following reason.By definition,the significance F is the probability of observing the estimated sample regression function that we actually observed if the true value of all of the population coefficients are 0.A very small value therefore indicates that it is very unlikely to observe the results that we actually observed if H0 were actually true.Hence,if we observe a very small,the fact that we observed the results that we did observe provides statistical evidence that H0 is likely not true.

Omitted variable bias occurs when

(Multiple Choice)
4.9/5
(32)

Figure: Suppose that in the course of testing whether salary functions differ for males and females,you estimate the pooled and male and female results in Figure 6.4.  Pooled \text { Pooled } ANOVA df SS MS F Significance F Regression 4 2.30931+12 5.77328+11 282.1787278 1.2198-215 Residual 4286 8.76901+12 2045965635 Total 4290 1.10783+13  Male \text { Male } ANOVA df SS MS F Significance F Regression 4 1.54309+12 3.85772+11 131.8489492 9.4649-101 Residual 2136 6.24964+12 2925860190 Total 2140 7.79272+12  Female \text { Female } ANOVA of SS MS F Significance F Regression 4 6.15055+11 1.53764+11 153.1758618 2.2255-115 Residual 2145 2.15323+12 1003838471 Total 2149 2.76829+12 Figure 6.4 -Based on the results in Figure 6.4,you should

(Multiple Choice)
4.9/5
(35)

Figure: Suppose you regress the number of medals won by countries in the 1996,2000,2004,and 2008 Olympics on GDP Per Capita (Thousands),Population (Millions),and Olympic Year and that you get the results in Figure 6.1. SUMMARY OUTPUT Regression Statisties Multiple R 0.473932054 R Square 0.224611592 Adyasted R Square 0.218853757 Standerd Error 14.85665558 Observations 408 ANOVA ff SS MS F Sigejficance F Regressice 3 25830.70959 8610.236529 39.00973242 3.69997E-22 Residual 404 89170.96688 220.7202151 Total 407 115001.6765 Coefficients Standand Error t Stat P-value Lower 95\% Upper 95\% Intercept 385.4384477 338.9966744 1.136997725 0.25621316 -280.9792491 1051.856144 GDP Per Capita (Thousands) 0.28651666 0.046941033 6.103756974 2.4315-09 0.194237479 0.37879584 Popplasion (Milions) 0.041979674 0.00443387 9.467954334 2.42102-19 0.033263338 0.050696011 Year -0.191084928 0.169402339 -1.127994491 0.259991678 -0.524105098 0.141935242  Figure 6.1\text { Figure } 6.1 -Based on the estimates in Figure 6.1,you should conclude that

(Multiple Choice)
4.8/5
(21)

Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3. SUMMARY OUTPUT Regrestion Starittict Muftiple R. 0.070494476 R Sequrt 0.004969471 Adigated R. Square 0.001879314 Standard Esror 4.819403326 Observations 970 ANOVA df S5 MS F Signifieance F Regranion 3 112.0566012 37.3522004 1.608161442 0.185858614 Reaidual 966 22436.94237 23.22664841 Total 969 22548.99897 Coeffeientt Srandard Error t Stat P-value Lower 9596 Upper 9596 Intercept 4.049920982 1.042107341 3.886280064 0.000108739 2.004865844 6.094976119 Age 0.015626984 0.010365497 1.507396119 0.131984878 -0.004714504 0.035968471 Family Size -0.093093463 0.084602383 -1.100364552 0.271447442 -0.259119103 0.072932177 Years of Education 0.005642075 0.06474525 0.087142685 0.930576157 -0.121415476 0.132699626  SUMALARY OUTPUT \text { SUMALARY OUTPUT } Regrestion Staritticz Multiple R. 0.005034034 R Square 2.53415-05 Adjuted R. Square -0.00100769 Standard Error 4.826368211 Observations 970 0.1151706360.115170636 ANOVA df SS MS F Signffeance F Regresion 1 0.571425385 0.571425385 0.024531191 0.875573561 Reiidual 968 22548.42754 23.29383011 Total 969 22548.99897 Coefficienty Standard Emor t Star P-value Lower 9596 Upper 9596 Intercept 4.288825645 0.732966216 5.851327866 6.66867E-09 2.850439806 5.727211483 Years of Education 0.009850586 0.062893064 0.156624361 0.875573561 -0.113571873 0.133273045 Figure 6.3 -Chow tests are used to determine whether

(Multiple Choice)
4.8/5
(34)

Why is multiple linear regression analysis such a valuable tool? Explain.

(Essay)
4.8/5
(31)

Tests of joint significance are used to determine whether

(Multiple Choice)
4.9/5
(31)

Omitted variable bias is a problem because

(Multiple Choice)
4.9/5
(36)

The denominator of the appropriate test statistic for testing for the joint significance of a subset of independent variables is

(Multiple Choice)
4.8/5
(38)

How do you perform a test of the individual significance of a slope coefficient? What are the null and alternative hypothesis for this test? What is the rejection rule? What is the intuition for why the test works? Explain.

(Essay)
4.8/5
(36)

Figure: Suppose you regress the number of medals won by countries in the 1996,2000,2004,and 2008 Olympics on GDP Per Capita (Thousands),Population (Millions),and Olympic Year and that you get the results in Figure 6.1. SUMMARY OUTPUT Regression Statisties Multiple R 0.473932054 R Square 0.224611592 Adyasted R Square 0.218853757 Standerd Error 14.85665558 Observations 408 ANOVA ff SS MS F Sigejficance F Regressice 3 25830.70959 8610.236529 39.00973242 3.69997E-22 Residual 404 89170.96688 220.7202151 Total 407 115001.6765 Coefficients Standand Error t Stat P-value Lower 95\% Upper 95\% Intercept 385.4384477 338.9966744 1.136997725 0.25621316 -280.9792491 1051.856144 GDP Per Capita (Thousands) 0.28651666 0.046941033 6.103756974 2.4315-09 0.194237479 0.37879584 Popplasion (Milions) 0.041979674 0.00443387 9.467954334 2.42102-19 0.033263338 0.050696011 Year -0.191084928 0.169402339 -1.127994491 0.259991678 -0.524105098 0.141935242  Figure 6.1\text { Figure } 6.1 -Based on the estimates in Figure 6.1,you should conclude that,holding all other independent variables constant,a $1,000 increase in GDP Per Capita is estimated to

(Multiple Choice)
4.9/5
(39)

Suppose you wish to know whether Age and Family Size are jointly significant in the model  Cigarettes Per Day =β0+β1 Age +β2 Family Size +β3 Years of Education +ε\text { Cigarettes Per Day } = \beta _ { 0 } + \beta _ { 1 } \text { Age } + \beta _ { 2 } \text { Family Size } + \beta _ { 3 } \text { Years of Education } + \varepsilon \text {. } The Restricted Model for testing the joint significance of the two variables?

(Multiple Choice)
4.8/5
(32)

Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3. SUMMARY OUTPUT Regrestion Starittict Muftiple R. 0.070494476 R Sequrt 0.004969471 Adigated R. Square 0.001879314 Standard Esror 4.819403326 Observations 970 ANOVA df S5 MS F Signifieance F Regranion 3 112.0566012 37.3522004 1.608161442 0.185858614 Reaidual 966 22436.94237 23.22664841 Total 969 22548.99897 Coeffeientt Srandard Error t Stat P-value Lower 9596 Upper 9596 Intercept 4.049920982 1.042107341 3.886280064 0.000108739 2.004865844 6.094976119 Age 0.015626984 0.010365497 1.507396119 0.131984878 -0.004714504 0.035968471 Family Size -0.093093463 0.084602383 -1.100364552 0.271447442 -0.259119103 0.072932177 Years of Education 0.005642075 0.06474525 0.087142685 0.930576157 -0.121415476 0.132699626  SUMALARY OUTPUT \text { SUMALARY OUTPUT } Regrestion Staritticz Multiple R. 0.005034034 R Square 2.53415-05 Adjuted R. Square -0.00100769 Standard Error 4.826368211 Observations 970 0.1151706360.115170636 ANOVA df SS MS F Signffeance F Regresion 1 0.571425385 0.571425385 0.024531191 0.875573561 Reiidual 968 22548.42754 23.29383011 Total 969 22548.99897 Coefficienty Standard Emor t Star P-value Lower 9596 Upper 9596 Intercept 4.288825645 0.732966216 5.851327866 6.66867E-09 2.850439806 5.727211483 Years of Education 0.009850586 0.062893064 0.156624361 0.875573561 -0.113571873 0.133273045 Figure 6.3 -When testing for the joint significance of Age and Family Size (Figure 6.3),the  USS unrestricted \text { USS unrestricted } Is

(Multiple Choice)
4.7/5
(34)

Suppose you wish to know whether Age and Family Size are jointly significant in the model  Cigarettes Per Day =β0+β1 Age +β2 Family Size +β3 Years of Education. \text { Cigarettes Per Day } = \beta _ { 0 } + \beta _ { 1 } \text { Age } + \beta _ { 2 } \text { Family Size } + \beta _ { 3 } \text { Years of Education. } The appropriate null hypothesis for this test is

(Multiple Choice)
4.8/5
(41)

Figure: Suppose you regress the number of medals won by countries in the 1996,2000,2004,and 2008 Olympics on GDP Per Capita (Thousands),Population (Millions),and Olympic Year and that you get the results in Figure 6.1. SUMMARY OUTPUT Regression Statisties Multiple R 0.473932054 R Square 0.224611592 Adyasted R Square 0.218853757 Standerd Error 14.85665558 Observations 408 ANOVA ff SS MS F Sigejficance F Regressice 3 25830.70959 8610.236529 39.00973242 3.69997E-22 Residual 404 89170.96688 220.7202151 Total 407 115001.6765 Coefficients Standand Error t Stat P-value Lower 95\% Upper 95\% Intercept 385.4384477 338.9966744 1.136997725 0.25621316 -280.9792491 1051.856144 GDP Per Capita (Thousands) 0.28651666 0.046941033 6.103756974 2.4315-09 0.194237479 0.37879584 Popplasion (Milions) 0.041979674 0.00443387 9.467954334 2.42102-19 0.033263338 0.050696011 Year -0.191084928 0.169402339 -1.127994491 0.259991678 -0.524105098 0.141935242  Figure 6.1\text { Figure } 6.1 -Based on the estimates in Figure 6.1,you should conclude that,holding all other independent variables constant,Olympic Year is estimated to have

(Multiple Choice)
4.9/5
(25)

Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3. SUMMARY OUTPUT Regrestion Starittict Muftiple R. 0.070494476 R Sequrt 0.004969471 Adigated R. Square 0.001879314 Standard Esror 4.819403326 Observations 970 ANOVA df S5 MS F Signifieance F Regranion 3 112.0566012 37.3522004 1.608161442 0.185858614 Reaidual 966 22436.94237 23.22664841 Total 969 22548.99897 Coeffeientt Srandard Error t Stat P-value Lower 9596 Upper 9596 Intercept 4.049920982 1.042107341 3.886280064 0.000108739 2.004865844 6.094976119 Age 0.015626984 0.010365497 1.507396119 0.131984878 -0.004714504 0.035968471 Family Size -0.093093463 0.084602383 -1.100364552 0.271447442 -0.259119103 0.072932177 Years of Education 0.005642075 0.06474525 0.087142685 0.930576157 -0.121415476 0.132699626  SUMALARY OUTPUT \text { SUMALARY OUTPUT } Regrestion Staritticz Multiple R. 0.005034034 R Square 2.53415-05 Adjuted R. Square -0.00100769 Standard Error 4.826368211 Observations 970 0.1151706360.115170636 ANOVA df SS MS F Signffeance F Regresion 1 0.571425385 0.571425385 0.024531191 0.875573561 Reiidual 968 22548.42754 23.29383011 Total 969 22548.99897 Coefficienty Standard Emor t Star P-value Lower 9596 Upper 9596 Intercept 4.288825645 0.732966216 5.851327866 6.66867E-09 2.850439806 5.727211483 Years of Education 0.009850586 0.062893064 0.156624361 0.875573561 -0.113571873 0.133273045 Figure 6.3 -Chow tests are based on comparing the

(Multiple Choice)
4.9/5
(40)

Figure: Suppose you regress the self-reported number of cigarettes smoked per day on Age,Family Size,and Years of Education and that you get the results in Figure 6.2. SUMMARY OUTPUT Regression Statistier Multiple R 0.070494476 R Square 0.004969471 Adpasted R Square 0.001879314 Standard Error 4.819403326 Observations 970 ANOVA df SS MS F Significance F Regression 3 112.0566012 37.3522004 1.608161442 0.185858614 Residual 966 22436.94237 23.22664841 Total 969 22548.99897 Coefficients Standard Error t Stat P-value Lower 9396 Upper 95\% Intercept 4.049920982 1.042107341 3.886280064 0.000108739 2.004865844 6.094976119 Age 0.015626984 0.010365497 1.507596119 0.131984878 -0.004714504 0.035968471 Family Sire -0.093093463 0.084602383 -1.100364552 0.271447442 -0.259119103 0.072932177 Years of Education 0.005642075 0.06474525 0.087142685 0.930576157 -0.121415476 0.132699626  Figure 6.2\text { Figure } 6.2 -Based on the estimates in Figure 6.2,you should conclude that,holding all other independent variables constant,each additional year of age is estimated to be associated with

(Multiple Choice)
4.8/5
(23)

The numerator of the appropriate test statistic for testing for the joint significance of a subset of independent variables is

(Multiple Choice)
4.8/5
(29)
Showing 1 - 20 of 44
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)