Exam 11: Taylor Polynomials and Infinite Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine the sum of the following infinite series: n=12n+(1)n3n\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } + ( - 1 ) ^ { n } } { 3 n } Enter just a reduced fraction of form ab\frac { a } { b } .

(Short Answer)
4.7/5
(40)

Sum an appropriate infinite series to find the rational number whose decimal expansion is: 0.4980 . \overline { 498 } . Enter just a reduced fraction of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(30)

Find an infinite series that converges to the value of 012xex\int _ { 0 } ^ { 1 } 2 x e ^ { - x } dx. Is 123+141151 - \frac { 2 } { 3 } + \frac { 1 } { 4 } - \frac { 1 } { 15 } \ldots correct?

(True/False)
4.9/5
(32)

Use the integral test to determine whether the infinite series k=1k(k2+2)2\sum _ { k = 1 } ^ { \infty } \frac { k } { \left( k ^ { 2 } + 2 \right) ^ { 2 } } is convergent or divergent. Enter just "convergent" or "divergent".

(Short Answer)
4.9/5
(30)

Determine the sum of the following geometric series: 3 - 1.8 + 1.08 + .648 - ... . Enter just a real number rounded off to three decimal places.

(Short Answer)
4.9/5
(33)

Determine the sum of the series e1\mathrm { e } ^ { - 1 } + e2e ^ { - 2 } + e3\mathrm { e } ^ { - 3 } + ... if it converges.

(Multiple Choice)
4.9/5
(31)

Find the third Taylor polynomial of f(x) = x2x ^ { 2 } + sin x at x = 0. Enter an unlabeled polynomial in x in standard form (i.e., highest powers first).

(Short Answer)
4.8/5
(38)

Find the first four non-zero terms of the Taylor series at x = 0 of f(x)=cos3x+sin2xf ( x ) = \cos 3 x + \sin 2 x . Is 1+2x9x22!8x33!+1 + 2 x - \frac { 9 x ^ { 2 } } { 2 ! } - \frac { 8 x ^ { 3 } } { 3 ! } + \ldots the correct answer?

(True/False)
4.7/5
(36)

Suppose f(x) = x4x ^ { 4 } - 7 x3x ^ { 3 } + 2. The third Taylor polynomial of f(x) at x = 0 is P3(x)=27x3\mathrm { P } 3 ( x ) = 2 - 7 x ^ { 3 } .

(True/False)
4.9/5
(44)

Determine the first four non-zero terms of the Taylor series at x = 0 for f(x) = sin x3x ^ { 3 } . Is f(x)=x3+x93!+x155!+x217!f ( x ) = x ^ { 3 } + \frac { x ^ { 9 } } { 3 ! } + \frac { x ^ { 15 } } { 5 ! } + \frac { x ^ { 21 } } { 7 ! } the correct answer?

(True/False)
4.8/5
(32)

Find the third Taylor polynomial of f(x) = sin x at x = 0 and use it to approximate sin12\sin \frac { 1 } { 2 } . Enter just a real number rounded off to two decimal places.

(Short Answer)
4.7/5
(45)

The area of a circle with radius 1 is π. If f(x) = 1x2\sqrt { 1 - x ^ { 2 } } gives the top half of this circle, as illustrated below, use the second Taylor polynomial of f(x) at x = 0 to find an approximate value for π. Is the following correct? 2()=1- \approx 1- = so \pi\approx  The area of a circle with radius 1 is π. If f(x) =  \sqrt { 1 - x ^ { 2 } }  gives the top half of this circle, as illustrated below, use the second Taylor polynomial of f(x) at x = 0 to find an approximate value for π. Is the following correct?  \begin{array} { l }  \mathrm { p } 2 ( \mathrm { x } ) = 1 - \frac { 1 } { 2 } \mathrm { x } ^ { 2 } \\ \frac { \pi } { 2 } \approx \int _ { - 1 } ^ { 1 } \left( 1 - \frac { 1 } { 2 } \mathrm { x } ^ { 2 } \right) \mathrm { dx } = \frac { 5 } { 3 } \text { so } \pi \approx \frac { 10 } { 3 } \end{array}

(True/False)
4.9/5
(47)

Determine the sum of the following geometric series: 1+(0.25)2+(0.25)4+(0.25)8+1 + ( 0.25 ) ^ { 2 } + ( 0.25 ) ^ { 4 } + ( 0.25 ) ^ { 8 } + \ldots . Enter a reduced fraction of form ab\frac { a } { b } .

(Short Answer)
4.7/5
(37)

Find the Taylor series expansion for f(x) = x1x\frac { x } { 1 - x } and use it to determine which of the following is false?

(Multiple Choice)
4.8/5
(38)

Find the first four non-zero terms of the Taylor series at x = 0 of f(x)=ln(x+1)f ( x ) = \ln ( x + 1 ) . Is f(x)=x+x22!+2x33!+6x44!f ( x ) = x + \frac { x ^ { 2 } } { 2 ! } + \frac { 2 x ^ { 3 } } { 3 ! } + \frac { 6 x ^ { 4 } } { 4 ! } correct?

(True/False)
4.9/5
(32)

Use the integral test to determine whether the infinite series k=15k2+12k31\sum _ { k = 1 } ^ { \infty } \frac { 5 k ^ { 2 } + 1 } { 2 k ^ { 3 } - 1 } is convergent or divergent. Enter just "convergent" or "divergent".

(Short Answer)
4.9/5
(34)

Estimate 01ex2dx\int _ { 0 } ^ { 1 } e ^ { x ^ { 2 } } d x by using the second Taylor polynomial for f(x) = ex2e ^ { x ^ { 2 } } . Is 01ex2dx43\int _ { 0 } ^ { 1 } \mathrm { e } ^ { \mathrm { x } ^ { 2 } } \mathrm { dx } \approx \frac { 4 } { 3 } the solution?

(True/False)
4.8/5
(36)

Determine the sum of the geometric series 2252\frac { 2 ^ { 2 } } { 5 ^ { 2 } } - 2353\frac { 2 ^ { 3 } } { 5 ^ { 3 } } + 2454\frac { 2 ^ { 4 } } { 5 ^ { 4 } } - ..., if it is convergent.

(Multiple Choice)
4.8/5
(31)

Determine the sum of the series n=012n3n\sum _ { n = 0 } ^ { \infty } \frac { 1 - 2 ^ { n } } { 3 n } .

(Multiple Choice)
4.9/5
(28)

Find the third Taylor polynomial of f(x) = cos x at x = π2\frac { \pi } { 2 } . Enter your answer as an unlabeled polynomial in x - π2\frac { \pi } { 2 } in standard form (i.e., highest powers first).

(Short Answer)
4.8/5
(42)
Showing 41 - 60 of 132
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)