Solved

Use the Graph to Determine the Limit Visually (If It g(x)=x3xx1g ( x ) = \frac { x ^ { 3 } - x } { x - 1 }

Question 247

Multiple Choice

Use the graph to determine the limit visually (if it exists) .Then identify another function g2(x) that agrees with the given function at all but one point.
g(x) =x3xx1g ( x ) = \frac { x ^ { 3 } - x } { x - 1 }  Use the graph to determine the limit visually (if it exists) .Then identify another function g<sub>2</sub>(x) that agrees with the given function at all but one point.    g ( x )  = \frac { x ^ { 3 } - x } { x - 1 }        \lim _ { x \rightarrow - 1 } g ( x )  = ?    A)   g _ { 2 } ( x )  = x ( x + 1 )    \lim _ { x \rightarrow - 1 } g ( x )  = 0  B)   g _ { 2 } ( x )  = 3 x ^ { 2 } + 1   \lim _ { x \rightarrow - 1 } g ( x )  = 4  C)   g _ { 2 } ( x )  = 3 x ^ { 2 } - 1   \lim _ { x \rightarrow - 1 } g ( x )  = 2  D)   g _ { 2 } ( x )  = x ( x - 1 )    \lim _ { x \rightarrow - 1 } g ( x )  = 2  E)   g _ { 2 } ( x )  = x ( x + 1 )    \lim _ { x \rightarrow - 1 } g ( x )  = 4 limx1g(x) =?\lim _ { x \rightarrow - 1 } g ( x ) = ?


A) g2(x) =x(x+1) g _ { 2 } ( x ) = x ( x + 1 ) limx1g(x) =0\lim _ { x \rightarrow - 1 } g ( x ) = 0
B) g2(x) =3x2+1g _ { 2 } ( x ) = 3 x ^ { 2 } + 1 limx1g(x) =4\lim _ { x \rightarrow - 1 } g ( x ) = 4
C) g2(x) =3x21g _ { 2 } ( x ) = 3 x ^ { 2 } - 1 limx1g(x) =2\lim _ { x \rightarrow - 1 } g ( x ) = 2
D) g2(x) =x(x1) g _ { 2 } ( x ) = x ( x - 1 ) limx1g(x) =2\lim _ { x \rightarrow - 1 } g ( x ) = 2
E) g2(x) =x(x+1) g _ { 2 } ( x ) = x ( x + 1 ) limx1g(x) =4\lim _ { x \rightarrow - 1 } g ( x ) = 4

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions