Solved

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }

Question 245

Multiple Choice

Find limh0f(x+h) f(x) h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x) =42xx2f ( x ) = 4 - 2 x - x ^ { 2 }


A) limh0f(x+h) f(x) h=2+2x\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - 2 + 2 x
B) limh0f(x+h) f(x) h=42x\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - 4 - 2 x
C) limh0f(x+h) f(x) h=2+3x\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = 2 + 3 x
D) limh0f(x+h) f(x) h=22x\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - 2 - 2 x
E) limh0f(x+h) f(x) h=2x2+2x\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - 2 x ^ { 2 } + 2 x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions