Solved

Algebraically Evaluate the Limit (If It Exists)by the Appropriate Technique(s) limx0x+22x\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x }

Question 152

Multiple Choice

Algebraically evaluate the limit (if it exists) by the appropriate technique(s) .Round your answer to four decimal places. limx0x+22x\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x }


A) limx0x+22x=240.3536\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x } = \frac { \sqrt { 2 } } { 4 } \approx 0.3536
B) limx0x+22x=2441\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x } = \frac { 2 \sqrt { 4 } } { 4 } \approx 1
C) limx0x+22x=240.5\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x } = - \frac { 2 } { 4 } \approx - 0.5
D) limx0x+22x=240.5\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x } = \frac { 2 } { 4 } \approx 0.5
E) limx0x+22x=4222.8284\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x } = \frac { 4 \sqrt { 2 } } { 2 } \approx 2.8284

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions