Solved

The Demand for the Cyberpunk II Arcade Video Game Is q(t)=13,0001+0.6e0.5tq ( t ) = \frac { 13,000 } { 1 + 0.6 e ^ { - 0.5 t } }

Question 45

Multiple Choice

The demand for the Cyberpunk II arcade video game is modeled by the logistic curve q(t) =13,0001+0.6e0.5tq ( t ) = \frac { 13,000 } { 1 + 0.6 e ^ { - 0.5 t } }
Where q(t) q ( t ) is the total number of units sold t months after the game's introduction.

Use technology to estimate q(9) q ^ { \prime } ( 9 ) .

Assume that the manufacturers of Cyberpunk II sell each unit for $900. What is the company's marginal revenue, dR dq\frac { \mathrm { d } R } { \mathrm {~d} q }

Use the chain rule to estimate the rate at which revenue is growing 9 months after the introduction of the video game.

Please round each answer to the nearest whole number.


A) dq dt=43,dR dq=900,dR dt=38,734\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,734
B) dq dt=43,dR dq=900,dR dt=38,478\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,478
C) dq dt=71,dR dq=700,dR dt=64,130\frac { \mathrm { d } q } { \mathrm {~d} t } = 71 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 700 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 64,130
D) dq dt=86,dR dq=800,dR dt=76,956\frac { \mathrm { d } q } { \mathrm {~d} t } = 86 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 800 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 76,956
E) dq dt=143,dR dq=900,dR dt=128,260\frac { \mathrm { d } q } { \mathrm {~d} t } = 143 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 128,260

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions