Solved

Diagonalize the Matrix A, If Possible A=PDP1A = P D P^{ - 1}

Question 17

Multiple Choice

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that
A=PDP1A = P D P^{ - 1}
- A=[900009001641160009]A=\left[\begin{array}{rrrr}9 & 0 & 0 & 0 \\0 & 9 & 0 & 0 \\-16 & 4 & 1 & 16 \\0 & 0 & 0 & 9\end{array}\right]


A) P=[2021021010010010],D=[9000090000900001]P=\left[\begin{array}{rrrr}2 & 0 & -2 & 1 \\0 & 2 & 1 & 0 \\1 & 0 & 0 & 1 \\0 & 0 & 1 & 0\end{array}\right], D=\left[\begin{array}{llll}9 & 0 & 0 & 0 \\0 & 9 & 0 & 0 \\0 & 0 & 9 & 0 \\0 & 0 & 0 & 1\end{array}\right]

B) Not diagonalizable

C) P=[4210820010110110],D=[9000090000100001]P=\left[\begin{array}{rrrr}4 & -2 & 1 & 0 \\8 & -2 & 0 & 0 \\1 & 0 & 1 & 1 \\0 & 1 & 1 & 0\end{array}\right], D=\left[\begin{array}{llll}9 & 0 & 0 & 0 \\0 & 9 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1\end{array}\right]

D) P=[2010020021011010],D=[9000090000900001]P=\left[\begin{array}{rrrr}2 & 0 & 1 & 0 \\0 & 2 & 0 & 0 \\-2 & 1 & 0 & 1 \\1 & 0 & 1 & 0\end{array}\right], D=\left[\begin{array}{llll}9 & 0 & 0 & 0 \\0 & 9 & 0 & 0 \\0 & 0 & 9 & 0 \\0 & 0 & 0 & 1\end{array}\right]


Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions