Solved

Solve the Differential Equation dydxyx=(lnx)5\frac { d y } { d x } - \frac { y } { x } = ( \ln x ) ^ { 5 }

Question 38

Multiple Choice

Solve the differential equation.
- dydxyx=(lnx) 5\frac { d y } { d x } - \frac { y } { x } = ( \ln x ) ^ { 5 }


A) y=16(lnx) 6+Cxy = \frac { 1 } { 6 } ( \ln x ) ^ { 6 } + C x
B) y=x(lnx) 6+Cxy = x ( \ln x ) ^ { 6 } + C x
C) y=16x(lnx) 6+Cxy = \frac { 1 } { 6 } x ( \ln x ) ^ { 6 } + C x
D) y=16x6+Cxy = \frac { 1 } { 6 } x ^ { 6 } + C x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions