Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 118

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- xneaxdx\int \mathrm { x } ^ { \mathrm { n } } \mathrm { e } ^ { - a x } \mathrm { dx }


A) xneaxdx=xneaxanaxn1eaxdx\int x ^ { n } e ^ { - a x } d x = \frac { x ^ { n } e ^ { - a x } } { a } - \frac { n } { a } \int x ^ { n - 1 } e ^ { - a x } d x
B) xneaxdx=axneax+naxn1eaxdx\int x ^ { n } e ^ { - a x } d x = - a x ^ { n } e ^ { - a x } + n a \int x ^ { n - 1 } e ^ { - a x } d x
C) xneaxdx=xneaxa+naxn2eaxdx\int x ^ { n } e ^ { - a x } d x = - \frac { x ^ { n } e ^ { - a x } } { a } + \frac { n } { a } \int x ^ { n - 2 } e ^ { - a x } d x
D) xneaxdx=xneaxa+naxn1eaxdx\int x ^ { n } e ^ { - a x } d x = - \frac { x ^ { n } e ^ { - a x } } { a } + \frac { n } { a } \int x ^ { n - 1 } e ^ { - a x } d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions