Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 123

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- cosnxdx\int \cos ^ { n } x d x


A) cosnxdx=cosn1xsinx(n1) sinxcosn2xdx\int \cos ^ { n } x d x = \cos ^ { n - 1 } x \sin x - ( n - 1 ) \int \sin x \cos ^ { n - 2 } x d x
B) cosnxdx=cosn1xsinx+(n1) cosn2xdx\int \cos ^ { n } x d x = - \cos ^ { n - 1 } x \sin x + ( n - 1 ) \int \cos ^ { n - 2 } x d x
C) cosnxdx=1ncosn1xsinx+n1ncosn2xdx\int \cos ^ { n } x d x = \frac { 1 } { n } \cos ^ { n - 1 } x \sin x + \frac { n - 1 } { n } \int \cos ^ { n - 2 } x d x
D) cosnxdx=1ncosn1xsinxn1ncosn1xdx\int \cos ^ { n } x d x = \frac { 1 } { n } \cos ^ { n - 1 } x \sin x - \frac { n - 1 } { n } \int \cos ^ { n - 1 } x d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions