Solved

Evaluate the Integral To Evaluate the Integral sin1xdx\int \sin ^ { - 1 } x d x

Question 278

Multiple Choice

Evaluate the integral.
-Use the formula f1(x) dx=xf1(x) x(ddxf1(x) ) dx\int \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \mathrm { dx } = \mathrm { xf } ^ { - 1 } ( \mathrm { x } ) - \int \mathrm { x } \left( \frac { \mathrm { d } } { \mathrm { dx } } \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \right) \mathrm { dx } to evaluate the integral. sin1xdx\int \sin ^ { - 1 } x d x


A) xsin1x+x+Cx \sin ^ { - 1 } x + x + C
B) xsin1x+11x2+Cx \sin ^ { - 1 } x + \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } + C
C) xsin1x1x2+Cx \sin ^ { - 1 } x - \sqrt { 1 - x ^ { 2 } } + C
D) xsin1x+1x2+Cx \sin ^ { - 1 } x + \sqrt { 1 - x ^ { 2 } } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions