Solved

Evaluate the Integral by Making a Substitution (Possibly Trigonometric) and Then

Question 280

Multiple Choice

Evaluate the integral by making a substitution (possibly trigonometric) and then applying a reduction formula.
- etsec3(et2) dt\int e ^ { t } \sec ^ { 3 } \left( e ^ { t } - 2 \right) d t


A) 12[sec(et2) tan(et2) lnsec(et2) +tan(et2) ]+C- \frac { 1 } { 2 } \left[ \sec \left( e ^ { t } - 2 \right) \tan \left( e ^ { t } - 2 \right) - \ln \left| \sec \left( e ^ { t } - 2 \right) + \tan \left( e ^ { t } - 2 \right) \right| \right] + C
B) 12[sec(et2) tan(et2) lnsec(et2) +tan(et2) ]+C\frac { 1 } { 2 } \left[ \sec \left( e ^ { t } - 2 \right) \tan \left( e ^ { t } - 2 \right) - \ln \left| \sec \left( e ^ { t } - 2 \right) + \tan \left( e ^ { t } - 2 \right) \right| \right] + C
C) 12[sec(et2) tan(et2) +lnsec(et2) +tan(et2) ]+C- \frac { 1 } { 2 } \left[ \sec \left( e ^ { t } - 2 \right) \tan \left( e ^ { t } - 2 \right) + \ln \left| \sec \left( e ^ { t } - 2 \right) + \tan \left( e ^ { t } - 2 \right) \right| \right] + C
D) 12[sec(et2) tan(et2) +lnsec(et2) +tan(et2) ]+C\frac { 1 } { 2 } \left[ \sec \left( e ^ { t } - 2 \right) \tan \left( e ^ { t } - 2 \right) + \ln \left| \sec \left( e ^ { t } - 2 \right) + \tan \left( e ^ { t } - 2 \right) \right| \right] + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions