Solved

Evaluate the Integral by First Performing Long Division on the Integrand

Question 38

Multiple Choice

Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions.
- 6y4+3y26yy31dy\int \frac { 6 y ^ { 4 } + 3 y ^ { 2 } - 6 y } { y ^ { 3 } - 1 } d y


A) 3y2lny1+6lny2+y+1+C3 y ^ { 2 } - \ln | y - 1 | + 6 \ln \left| y ^ { 2 } + y + 1 \right| + C
B) 3y2+6lny1+lny2y+1+C3 y ^ { 2 } + 6 \ln | y - 1 | + \ln \left| y ^ { 2 } - y + 1 \right| + C
C) 3y2+lny1+(2y+1) lny2+y+1+C3 y ^ { 2 } + \ln | y - 1 | + ( 2 y + 1 ) \ln \left| y ^ { 2 } + y + 1 \right| + C
D) 3y2+lny1+lny2+y+1+C3 y ^ { 2 } + \ln | y - 1 | + \ln \left| y ^ { 2 } + y + 1 \right| + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions