Solved

Solve the Problem x=acost,y=bsint,0t2πx = a \cos t , y = b \sin t , 0 \leq t \leq 2 \pi

Question 36

Multiple Choice

Solve the problem.
-The length of the ellipse
x=acost,y=bsint,0t2πx = a \cos t , y = b \sin t , 0 \leq t \leq 2 \pi is  Length =4a0π/21e2cos2tdt\text { Length } = 4 \mathrm { a } \int _ { 0 } ^ { \pi / 2 } \sqrt { 1 - \mathrm { e } ^ { 2 } \cos ^ { 2 } \mathrm { t } } \mathrm { dt } where e\mathrm { e } is the ellipse's eccentricity. Use Simpson's Rule with n=6n = 6 to estimate the length of the ellipse when a=2a = 2 and e=13e = \frac { 1 } { 3 } .


A) 12.1751
B) 12.2097
C) 11.8956
D) 11.2546

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions