Solved

Find the Derivative of Y with Respect to the Appropriate y=(θ2+4θ)tanh1(θ+3)y = \left( \theta ^ { 2 } + 4 \theta \right) \tanh ^ { - 1 } ( \theta + 3 )

Question 133

Multiple Choice

Find the derivative of y with respect to the appropriate variable.
- y=(θ2+4θ) tanh1(θ+3) y = \left( \theta ^ { 2 } + 4 \theta \right) \tanh ^ { - 1 } ( \theta + 3 )


A) (2θ+4) tanh1(θ+3) θθ+2( 2 \theta + 4 ) \tanh ^ { - 1 } ( \theta + 3 ) - \frac { \theta } { \theta + 2 }
B) (2θ+4) 1θ+8( 2 \theta + 4 ) - \frac { 1 } { \theta + 8 }
C) (2θ+4) tanh1(θ+3) θ2+4θ1+(θ+3) 2( 2 \theta + 4 ) \tanh ^ { - 1 } ( \theta + 3 ) - \frac { \theta ^ { 2 } + 4 \theta } { 1 + ( \theta + 3 ) ^ { 2 } }
D) θθ+2- \frac { \theta } { \theta + 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions